
p-ADIC ABELIAN INTEGRALS

PIERRE COLMEZ

Abstract. The study of complex abelian integrals, i.e., integrals of algebraic
functions of one complex variable, was a major incentive to develop complex
algebraic geometry (some 150 years ago). After briefly explaining the complex

theory, I will study its analog in the p-adic world: this provides a concrete
introduction to p-adic Hodge theory, a theory that was originated by Tate
some 50 years ago and was turned into one of most powerful tools of number
theory.

This is the note of the lectures in BICMR, Beijing from 2016/09/14 to
2016/10/26.
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5.6. One example of application 31

1. Complex abelian integral on elliptic curves

1.1. Building blocks of functions on C associate to a lattice. Let E/C be
an elliptic curve given by a Weierstrass equation

(1.1.1) y2 = 4x3 − g2x− g3,

Λ be the image of H1(E(C),Z) in C by

u 7→
∫
u

dx

y
.

Then we have an isomorphism of Riemann surfaces, through which we can define
an addition on E, induced by addition on C:

α : E −→ C/Λ,

P 7−→
∫ P

O

dx

y
.

(1.1.2)

The inverse is given by

(1.1.3) ΦΛ : z 7−→ (℘, ℘′),

where the Weierstrass σ, ζ and ℘ functions are defined as

σ(z,Λ) = z
∏

w∈Λ−{0}

(1− z

w
)e

z
w+ z2

2w2 ,(1.1.4)

ζ(z,Λ) =
d

dz
log σ(z,Λ) =

1

z
+

∑
w∈Λ−{0}

(
1

z − w
+

1

w
+

z

w2
),(1.1.5)

℘(z,Λ) = − d

dz
ζ(z,Λ) =

1

z2
+

∑
w∈Λ−{0}

(
1

(z − w)2
− 1

w2
).(1.1.6)

Proposition 1.1. Fix a lattice Λ, and let w ∈ Λ, we then have the formulae

σ(z + w) = σ(z) exp(η(w)z + θ(w)),

where η and θ are constants depending on w.

Proof. This argument is a consequence of

dlog
σ(z + w)

σ(z)
= ζ(z + w)− ζ(z)

=

∫ z+w

z

−℘(ξ) dξ,

and that the last integral does not depend on z if w is in Λ, denoted by η(w). �

Proposition 1.2. The field of rational functions on C/Λ is generated by ℘ and ℘′.
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1.2. Abel theory. Let D ∈ Div(C/Λ) = Z[C/Λ] be a divisor on C/Λ, then

D =
∑

w∈C/Λ

nw[w], nw ∈ Z,

nw = 0 for almost all w. Define

degD =
∑
w

nw,

TrD =
∑

nww ∈ C/Λ.

Denote by Div0(C/Λ) the subgroup of Div(C/Λ) consisting of all degree zero divi-
sors. For any rational function f ∈ C(C/Λ)×, define

div(f) =
∑

vw(f)w,

where vw is the order of f at w.

Theorem 1.3 (Abel). degD = 0 and trD = 0 if and only if D = div(f) for some
f ∈ C(C/Λ)×.

Proposition 1.4. Let D =
∑
ni[zi] be a divisor on C such that

∑
ni = 0 and∑

nizi = 0, then ∏
σ(z − zi,Λ)ni

is a rational function on C/Λ with divisor D̄ =
∑
ni(z̄i).

Corollary 1.5. We hence have an isomorphism EΛ ≃ Div(C/Λ)
Div(f) .

Theorem 1.6. (i) For any f ∈ C(E), Φ∗
Λ(f) = f ◦ ΦΛ can be written uniquely as

λ0 +

n∑
i=1

ki∑
k=1

λi,k
k!

ζ(k−1)(z − ai,Λ),

where λ0, ...λi,k ∈ C, ai ∈ CmodΛ,
∑
λi,1 = 0. Conversely, such expression is Φ∗

Λf
for some f ∈ C(E) if

∑
λi,1 = 0.

(ii) The integration of f ∈ C(E) is given by∫
f ◦ ϕΛ = λ0z +

n∑
i=1

λi,1 log σ(z − ai) +
n∑

i=1

ki∑
k=2

λi,k
k!

ζ(k−2)(z − ai),

in the complex plane, and is a rational function on EΛ if and only if λ0 = 0, λi,1 = 0
for all i, and

∑
λi,2 = 0.

1.3. Rational differential forms on E. For f ∈ C(E), let ω = f dx
y ∈ Ω1

C(E) be

a rational differential on E. Then

ϕ∗Λω = (f ◦ ϕΛ) dz.

Definition 1.7. We say ω is of the

• first kind if it is holomorphic (⇐⇒ f ◦ ϕΛ is constant);
• second kind if it has no residue (⇐⇒ λi,1 = 0 for all i);
• third kind if it only has simple poles and residues in Z ( ⇐⇒ ki = 1 and
λi,1 ∈ Z for all i).

Denote by H0(E,Ω1),DSK(E),DTK(E) the three kind of differential forms respec-
tively. Then

H0(E,Ω1) = C
dx

y
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and

DSK(E) ⊇ {df : f ∈ C(E)},

DTK(E) ⊇ {df
f

: f ∈ C(E)×},

the right hand sides are called exact forms.

Let u be a path on E(C). For ω ∈ DSK(E),
∫
u
ω depends only on the image of

u in H1(E(C),Z). For ω ∈ DTK(E),
∫
u
ωmod 2πiZ depends only on the image of

u in H1(E(C),Z).
For ω ∈ DTK(E),

ϕ∗Λω = (λ0 +

n∑
i=1

λi,1ζ(z − ai,Λ)) dz.

Denote

(1.3.1) div(ω) =
n∑

i=1

λi,1(ϕΛ(ai)) ∈ Div0(E).

Then we have an exact sequence

0→ H0(E,Ω1)→ DTK(E)→ Div0(E)→ 0.

Notice that for f ∈ C(E)×, div(dff ) = div(f). By Abel’s theorem,

Div0(E)

{div(f)}
∼−→ E(C)∑

niPi 7→ ⊕niPi.

Hence we have a commutative diagram with exact rows and columns:

{dff }
∼ //

��

{div(f)}

��
0 // H0(E,Ω1) // DTK(E) //

��

Div0(E) //

��

0

0 // H0(E,Ω1) // DTK(E)/{dff } // E(C)

��

// 0

0

The group H0(E,Ω1) on the last line is an algebraic group denoted Ga. It is simply
C in our case. The elliptic curve E(C) on the last line is also an algebraic group.

It turns out that DTK(E)/df
f can be made an algebraic group as well, which is

called the universal extension of E.

Definition 1.8. For any ω1, ω2 ∈ Λ, the intersection number ω1#ω2 is the dis-
criminant of (ω1, ω2) under an orientable basis of Λ. That is to say, for a basis
{w1, w2} of Λ with Im(w2/w1) > 0,

u#v = det(

∫
u

dx

y
,

∫
v

dx

y
).

Theorem 1.9. (1) dx
y ,

x dx
y ∈ DSK(E).

(2) ω ∈ DSK(E) is exact if and only if
∫
u
ω = 0 for any u.
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(3) We have the Legendre relation. For u, v ∈ H1(E(C),Z),∫
u

dx

y

∫
v

x dx

y
−
∫
u

xdx

y

∫
v

dx

y
= 2πiu#v.

(4) H1
dR(E) := DSK(E)/{df} is of dimension 2, which is generated by {dxy ,

x dx
y }.

Remark 1.10. Assume E is defined over Q. If E has complex multiplication (CM),
then

Q(

∫
u

dx

y
,

∫
u

x dx

y
: u ∈ H1(E(C),Z))

has transcendental degree 2. It’s conjecturally that if E doesn’t have CM, the
transcendental degree should be 4. That’s Grothendieck’s “Hodge conjecture is
false for trivial residues”.

Proof. (1) That’s because

ϕ∗Λ
dx

y
= dz, ϕ∗Λ

x dx

y
= ℘(z) dz = ζ ′(z) dz.

(2) Suppose ϕ∗Λω = dF on C, then F (w) =
∫ w

a
ϕ∗Λω does not depend on the

choice of path and then
∫
u
ω = 0

If
∫
u
ω = 0 for any u, then F (w) =

∫ w

a
ϕ∗Λω does not depend on the choice of

path. Moreover, F (z + w) = F (z) for any w ∈ Λ. Hence F is an elliptic function
and then F = ϕ∗λf for some f ∈ C(E). Therefore ω = df .

(3) By bilinearity, we may assume {u, v} is a basis of H1(E(C),Z) and
∫
u

dx
y ,

∫
v

dx
y

is an oriented basis. The integration of ζ(z) on the polygon with counterclockwise
vertices a, a+ w1, a+ w1 + w2, a+ w2, a is∫

ζ(z) dz = 2πi.

Meanwhile, it is∫ a+w1

a

(ζ(z)− ζ(z + w2)) dz −
∫ a+w2

a

(ζ(z)− ζ(z + w1)) dz

=

∫ a+w1

a

∫ z+w2

z

℘(τ) dτ dz −
∫ a+w2

a

∫ z+w1

z

℘(τ) dτ dz

=

∫
u

dx

y

∫
v

x dx

y
−
∫
u

xdx

y

∫
v

dx

y
.

(4) This follows from (2) and (3). �

Theorem 1.11. The pairing

(H1(E(C),Z)⊗ C)×H1
dR(E) −→ C

(u, ω) 7−→
∫
u

ω

is perfect.

1.4. Algebraic universal extension.

Proposition 1.12. For any w ∈ Λ,

ζ(z + w,Λ)

ζ(z,Λ)
= ±eη(w,Λ)(z+w

2 ),

where η(w,Λ) = ζ(z + w,Λ)− ζ(z,Λ) and the sign depends on whether w
2 is in Λ.
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Let E/C be an elliptic curve. Denote by m,pr1,pr2 : E ×E → E the morphism
m(x, y) = x+ y,pr1(x, y) = x,pr2(x, y) = y. For any ω ∈ Ω1

E/C, denote by

δω = m∗ω − pr∗1ω − pr∗2ω.

For any f ∈ C(E × E), denote by

δF (x, y) = F (x⊕ y)− F (x)− F (y).

Theorem 1.13 (Theorem of the square). (1) If ω ∈ DSK(E), there exists a
unique F ∈ C(E × E) up to constant such that δω = dF .

(2) If ω ∈ DTK(E), there exists a unique F ∈ C(E ×E)× up to constant such
that δω = dF

F .

Proof. (1) Let dFω be the pullback of ϕ∗Λω on C, then dδFω is a pullback of (ϕΛ ×
ϕΛ)

∗δω on C× C. We want to prove that

δFω = Fω(z1 + z2)− Fω(z1)− Fω(z2)

is periodic of period Λ× Λ. Write

ϕ∗Λω = (λ0 +
n∑

i=1

ki∑
k=1

λi,k
k!

ζ(k)(z − ai,Λ)) dz,

then

Fω = λ0z +

n∑
i=1

ki∑
k=1

λi,k
k!

ζ(k−1)(z − ai,Λ).

If k ≥ 2, ζ(k−1) is already periodic. Since ζ(z + w)− ζ(z) = η(w) if w ∈ Λ,

Gi(z1, z2) = ζ(z1 + z2 − ai)− ζ(z1 − ai)− ζ(z2 − ai)

is periodic of period Λ× Λ.
(2) Write

ϕ∗Λω = (λ0 +
n∑

i=1

λiζ(z − ai,Λ)) dz, λi ∈ Z,
∑

λi = 0.

Then we need to show that if f(z) = σ(z−a)
σ(z−b) , then

f(z1+z2)
f(z1)f(z2)

is periodic of period

Λ× Λ. But this follows from σ(z + w) = ea(w)z+b(w)σ(z). �

Theorem 1.14. There is an algebraic group Ẽ (called the universal extension of
E) with

(1) exact sequence of algebraic groups

0→ Ga → Ẽ → E → 0.

(2) Ẽ(C) = DTK(E)/{dff } as a group.

(3) The following diagram commutes and the rows are exact:

0 // C

≀
��

i2 // C×C
{(w,η(w)):w∈Λ}

≀ ϕ

��

pr1 // C/Λ

≀

��

// 0

0 // Cdx
y

// Ẽ(C) π // E(C) // 0

where

ϕ(z1, z2) 7→ (ζ(z − z1)− ζ(z) + z2) dz

is an isomorphism of groups. Moreover, the first row is exact as algebraic
groups.
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(4) π∗(xdy
y )+dz2 = dF for some rational function F on Ẽ. Thus H1

dR(E) can

be identified to the invariant differentials on Ẽ.

Proof. We first define Ẽ ≃ C× C/(w, η(w)) as an algebraic variety.
For a point a on E(C) and ã a lifting of it, we define a map

(C− {ã+ Λ})× C −→ C× C(1.4.1)

(x, λ) −→ (x, ζ(x− ã)− ζ(−ã) + λ).(1.4.2)

Note the image of (x, λ) and (x+ w, λ) differ by (w, η(w)) provided w ∈ Λ, so this
map induces a map sa : Ua×C→ C×C/(w, η(w)), where Ua stands for E(C)− a.

For another point b on E(C), we similarly have a map sb : Ub × C → C× C
/(w, η(w)). Let fa,b(x) = ζ(x̃ − ã) − ζ(−ã) − ζ(x̃ − b̃) + ζ(−b̃), then the map
(x, λ) 7→ (x, λ+ fa,b(x)) induces an algebraic function ϕa,b on (Ua ∩ Ub)× C, with
the property that sa = sb ◦ ϕa,b.

Now we show that C× C/(w, η(w)) is an algebraic group. In fact, the addition
law on C×C/(w, η(w)) induces an addition on Ua×C, whose formulae is given by

(x, λ) + (x′, λ′) = (x⊕ x′, λ+ λ′ +G(x, x′)),

where G(x, x′) is an algebraic function induced by

ζ(x− ã) + ζ(x′ − ã)− ζ(−ã)− ζ(x+ x′ − ã).

The isomorphism Ẽ ≃ DTK(E) is defined locally by ψa : Ua × C→ DTK(E),

(x, λ) 7→ (−ζ(z + x̃− ã) + ζ(z − ã) + ζ(x̃− ã)− ζ(−ã) + λ)dz.

Note the result of the mapping is independent of the choice of x̃ and ã. Furthermore,
this locally defined map is in fact global since we have

ψa(x, λ)− ψb(x, λ+ fa,b(x)) = dlog
σ(z + x̃− b̃)σ(z − ã)
σ(z + x̃− ã)σ(z − b̃)

,

in which the right hand side is the logarithm derivative of a function on E(C). �

1.5. Weil pairing. Let E be an elliptic curve over a filed K of characteristic 0.
Let GK = Gal(K̄/K). Then for any integer m ≥ 1, E[m] ≃ (Z/mZ)2 and this
gives

ρE,m : GK → GL2(Z/mZ).
The first statement follows from that E is defined over Q(g2, g3), which can be
identified with a subfield of C. This is an example of Lefschetz principle, which
proposes that an algebraic statement over algebraic closed filed of characteristic
zero can be checked by just looking at C.

The representations ρE,m are very interesting. For p ≥ 5 and E : y2 = x(x −
ap)(x+ bp), then ρE,m has so nice property that

ap + bp = cp, (a, b, c) = 1,

cannot have integral solution.

Theorem 1.15. (1) For any P ∈ E[m], there is a unique f ∈ K̄(E)× up to
K̄× such that div(f) = m([P ]− [O]).

(2) For P,Q ∈ E[m],

em(P,Q) =
fQ(x)

fQ(x⊖ P )
fP (x⊖Q)

fP (x)
∈ µm

is constant.
(3) Moreover, (P,Q) 7→ em(P,Q) gives a bilinear, alternating, non-degenerated

pairing on E[m]× E[m].
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(4) If K = C, and ϕΛ : C/Λ ∼−→ E(C), then

em(P,Q) = e
2πi
m ma#mb,

where a, b is an inverse image of P and Q in C.

Proof. Assume K = C and let ϕΛ : C/Λ ∼−→ E(C). The uniqueness follows from
the fact that a regular function on E without poles and zeroes must be constant.

By Abel’s theorem,

fP (z) = σ(z − a)mσ(z)1−mσ(z −ma)−1

is a rational function on E(C) with divisor m([P ]− [O]). Then

em(P,Q) =
σ(z − a−mb)
σ(z − a)

· σ(z − b)
σ(z − b−ma)

· σ(z −ma)
σ(z −mb)

= exp(
maη(mb)−mbη(ma)

m
) = exp(

2πi

m
(ma#mb)). �

2. Complex abelian integral on algebraic curves

2.1. Algebraic curve over C. An curve X over C is called proper if X(C) is
compact; projective if it is defined by a homogeneous polynomial; smooth if locally
holomorphic to an open disk. Thus a smooth and proper algebraic curve X over C
gives a compact Riemann surface X(C), and vice versa (hard!). Let g be its genus.
Then topologically it’s a 4g-gon with edges identified.

Fix a point P0 on X(C), the corresponding fundamental group is

π1(X(C), P0) =< ai, bi, i = 1, . . . , g|
g∏

i=1

aibia
−1
i b−1

i = 1 >,

and the fist homology group is the abelianization of it.

Figure 1. 4g-gon

The intersection pairing

H1(X(C),Z)×H1(X(C),Z) −→ Z
(a, b) 7−→ a#b

is a bilinear alternating paring. There exist a canonical basis {a1, ..., ag, b1, ..., bg}
of H1(X(C),Z) such that

ai#bj = δij = −bj#ai, ai#aj = 0 = bi#bj .
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That is to say, under the basis {a1, . . . , ag, b1, . . . , bg}, the matrix of intersection
numbers is (

O Ig
−Ig O

)
.

Topologically, ai and bi are the sides of a 4g-gon. This also holds for compact
orientable topological manifold.

Theorem 2.1. (1) dimC H0(X(C),Ω1
X) = g.

(2) There exists a (unique) basis (ω1, ..., ωg) of H
0(X(C),Ω1

X) such that
∫
ai
ωj =

δij.
(3) The matrix B = (zij)1≤i,j≤g = (

∫
bi
ωj) is symmetric and ImB is positive

definite.

Let Λ = Zg ⊕BZg ⊂ Cg be the image of H1(X(C),Z) by

u 7→
∫
u

ω = (

∫
u

ω1, ...,

∫
u

ωg)

and J(C) = Cg/Λ be a complex torus. Fix a point P0 ∈ X(C), the map

(2.1.1) ιP0(P ) =

∫ P

P0

ωmodΛ

fits in the following commuting diagram

π1(X(C), P0)

��

ιP0 // π1(J(C), 0)

≃
��

H1(X(C),Z) ≃ // Λ

Theorem 2.2 (Riemann). (1) J has a unique structure of algebraic projective
variety over C of dimension g and J(C) = Cg/Λ endows J(C) with a group
law, which gives a algebraic group structure of J .

(2) ιP0 gives an embedding of algebraic varieties.
(3) The induced morphism ι∗P0

: H0(J,Ω1)→ H0(X,Ω1) is an isomorphism and
ι∗P0

dzi = ωi.

Remark 2.3. (1) J is called the Jacobian of X. If X is defined over a number field
K, then so is J .

(2) If g ≤ 1, then ιP0 is an isomorphism. But for g ≥ 2, X is very small in J .
(3) J is very useful to study X. The Mordell-Weil theorem says that J(K) is

a finitely generated abelian group. The map LP0 is an essential tool to prove the
finiteness of X(K) for g ≥ 2.

Theorem 2.4 (Abel). (1) Let D =
∑
ni(Pi) be a divisor on X, then D =

div(f) for some f ∈ C(X)× if and only if degD = 0 and trD = ⊕[ni]ιP0Pi =
0 ∈ J .

(2) We have an exact sequence

0→ {div(f)} → Div0(X(C))→ J(C)→ 0.

The proofs use Riemann θ-function which replaces Weierstrass σ-function. De-
fine

θ(z) =
∑
n∈Zg

exp(iπtnBn+ 2iπtnz),

it converges because ImB is positive definite. If u = a+Bb ∈ Λ, a, b ∈ Zg,

θ(z + u) = θ(z) exp(−iπtbBb− 2iπtbz).

Hence the zeroes of θ are periodic of period Λ, and we can talk about the zeroes of
θ in J , or θ ◦ ιP0 in X.
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Theorem 2.5. (1) There is w0 ∈ Cg, unique up to Λ, such that if z ∈ J is
generic with a lifting z̃ ∈ Cg,

ιP : Bg(0, r) −→ Y (C)
P 7−→ θ(w0 − z̃ + ιP0(P ))

with ιP (0) = P has divisor (Q1,z) + · · · + (Qg,z) where Q1,z, . . . , Qg,z are
uniquely determined by

ιP0(Q1,z)⊕ · · · ⊕ ιP0(Qg,z) = z ∈ J.
(2) The map

Xg/Sg −→ J

(P1, . . . , Pg) 7−→ ιP0(P1) + · · ·+ ιP0(Pg)

is a birational isomorphism.
(3) The theta divisor Θ = {x ∈ J : θ(w0 − x) = 0} is

{ιP0(Q1,z), . . . , ιP0(Qg,z) : Qi,z ∈ X}.

2.2. Differential forms. Let Y be a smooth algebraic variety over C (we will take
Y = X or J), which is viewed as a complex analytic variety. By GAGA principal of
Serre, the meromorphic functions on Y (C) are one-to-one corresponding to rational
functions on Y .

If ω ∈ Ω1
C(Y ), P ∈ Y (C), then there is

ιP : B(0, r)→ Y (C)
with ι(0) = P . Here Bg(0, r) is the product of g closed balls with radius r of the
complex plane. If Y is of dimension g, we can write

ι∗Pω = f1 dz1 + · · ·+ fg dzg

for some meromorphic function fi on the open ball Bg(0, 1
−).

We say that ω is closed if locally, outside of the poles, it is df . Then

ι∗Pω =

g∑
i=1

∂f ◦ ιP
∂zi

dzi.

By Poincaré’s lemma, this is equivalent to dω = 0, then

0 = ι∗P dω =

g∑
i=1

dfi ∧ dzi =
∑
i<j

(
∂fi
∂zj
− ∂fj
∂zi

)
dzj ∧ dzi.

Definition 2.6. We say ω is of the

• first kind, if it is holomorphic and closed;
• second kind, if locally ω = df for some meromorphic f (no residue);

• thrid kind, if locally ω = df
f for some nonzero everywhere f (simple poles,

integral residue).

Then we have an exact sequence

0→ H0(Y,Ω1)→ DSK(Y )⊕ C⊗DTK(Y )→ (Ω1
C(Y ))

d=0 → 0.

Denote H1
dR = DSK(Y )/{df}, then we have a pairing (period)

H1
dR(Y )×H1(Y (C),Z) −→ C

(ω, u) 7−→
∫
u

ω.

We have several theorems similar to those for elliptic curves.

Theorem 2.7. (1) ι∗P0
induces an isomorphism H1

dR(J) ≃ H1
dR(X).
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(2) dimC H1
dR(X) = 2g and (ω, u) 7→

∫
u
ω is perfect. Thus

H1
dR(X) = Hom(H1(X(C),Z),C).

(3) If u is generic, then the image of

ηi,u = d

(
∂θ(z − u)/∂zi
θ(z − u)

)
∈ DSK(J)

in H1
dR(J) doesn’t depend on u. Denote by ηi = ι∗P0

ηi,u, then ω1, . . . , ωg, η1, . . . , ηg
is a basis of H1

dR(X).
(4) (Riemann period relation). If u, v ∈ H1(X(C),Z),

g∑
i=1

∫
u

ηi

∫
v

ωi −
∫
v

ηi

∫
u

ωi = 2πiu#v.

Theorem 2.8 (Theorem of square). For any ω ∈ DSK(J),

m∗ω − pr∗1ω − pr∗2ω = df

for some f ∈ C(J × J).
For any ω ∈ DTK(J),

m∗ω − pr∗1ω − pr∗2ω = df/f

for some f ∈ C(J × J)×.

Theorem 2.9. There is an algebraic group J̃ with the following properties:

(1)

J̃(C) =
DTK(X)

df/f
=

DTK(J)

df/f
= C2g/Λ

where Λ is the lattice consisting of

(

∫
u

ω1, . . . ,

∫
u

ωg,

∫
u

η1, . . . ,

∫
u

ηg)

for all u ∈ H1(X(C),Z).
(2) there is an exact sequence

0→ H0(X,Ω1)→ J̃
π−→ J → 0

with C-points

0→ H0(X,Ω1)→ DTK(X)

{df/f}
→ Div0(X)

{div(f)}
→ 0;

(3) if η ∈ DSK(J), there is a unique αη ∈ H0(J̃ ,Ω1), invariant under transla-

tion by J̃ , such that

π∗η − αη = df, f ∈ C(J̃).

H1
dR(X) is isomorphic to the invariant forms on J̃ .

3. p-adic fields

3.1. p-adic number. Let K be a field.

Definition 3.1. A norm on K is a map | · | : K → R+ satisfying

• |x| = 0 ⇐⇒ x = 0;
• |xy| = |x||y|;
• |x+ y| ≤ |x|+ |y|.

Say | · | is ultrametric or non-archimedean if |x+ y| ≤ sup(|x|, |y|).
A valuation is a map v : K → R ∪ {+∞} satisfying
• v(x) = +∞ ⇐⇒ x = 0;
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• v(xy) = v(x) + v(y);
• v(x+ y) ≥ inf(v(x), v(y)).

Say v is discrete if v(K×) is discrete, i.e., v(K×) = αZ for some α > 0; normalized
if v(K×) = Z.
π is a pseudo-uniformizer If v(π) > 0. If v is discrete with v(K×) = αZ, π is a

uniformizer if v(π) = α.

If v is a valuation and 0 < a < 1, then x 7→ |x| = av(x) is a norm. Conversely, if
| · | is ultrametric, for any λ > 0, v(x) = −λ log |x| is a valuation.

A norm or valuation defines a topology, in fact a metric space, with an open
basis

B(a, δ−) = {x : |x− a| < δ}.

Theorem 3.2 (Ostrowski). (1) On Q, up to equivalence, the nontrivial norms
are | · |∞ = | · |R and | · |p = p−vp(·).

(2) On C(T ), up to equivalence, the nontrivial valuations are va, a ∈ P1(C).

We have the product formula∏
|x|v = 1, x ∈ Q×;∏

va(f) = 0, f ∈ C(T ).

Remark 3.3. (1) If | · | is a ultrametric, |K̂| = |K| where K̂ is the completion of K
under the topology induced by | · |.

(2) If (K, | · |) is complete,
∑
an converges if and only if an tends to 0.

(3) Assume K is complete. Let

OK = {x ∈ K : |x| ≤ 1}
be the ring of integers of K, then

OK ≃ lim←−OK/{|x| ≤ an}
for any 0 < a < 1.

Let Qp be the completion of Q for | · |p or vp and

Zp = {x ∈ Qp | |x|p ≤ 1}.

Proposition 3.4. For any n ≥ 1, Z/pnZ ≃ Zp/p
nZp.

Thus Zp = lim←−Z/pnZ.
Let (K, v) be a complete field. Then all valuations on K are equivalent and K

is complete for any of them.
For s ≥ 1, let Ps = K ⊕ Kx ⊕ · · · ⊕ Kxs−1. Let g, h ∈ K[x] with deg g ≤

n, deg h ≤ k. Define

θg,h : Pk ⊕ Pn −→ Pn+k

(u, v) 7−→ ug + vh.

Let R = R(g, h) be the determinant of θg,h. Then R = 0 if and only if

deg g ≤ n− 1, deg h ≤ k − 1 or (g, h) ̸= 1.

Denote
v0(

∑
aix

i) = inf
i
v(ai).

Theorem 3.5 (Hensel’s lemma). For c > 0, f, g, h ∈ OK [x], suppose

• deg g ≤ n, deg h ≤ k, deg(f − gh) ≤ n+ k − 1;
• v0(f − gh) ≥ c+ 2v(R(g, h)).

Then there are unique g̃, h̃ with
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• deg(g − g̃),≤ n− 1,deg(h− h̃) ≤ k − 1;
• v0(g − g̃), v0(h− h0) ≥ c+ v(R(g, h));

• f = g̃h̃.

Corollary 3.6. If f ∈ K[x] is monic irreducible and f(0) ∈ OK , then f ∈ OK [x].

Proof. Write f = xd + ad−1x
d−1 + · · ·+ a0. Assume i is the biggest one such that

v(ai) = inf
j
v(aj) < 0.

Then

a−1
i f = bdx

d + · · ·+ xi + · · ·+ b0, bi ∈ OK .

Let g = xi + · · ·+ b0 and h = 1 + bdx
d−i. Then R(g, h) ≡ 1modmK , where mK is

the maximal ideal of OK , and

v0(f − gh) > 0, deg(f − gh) ≤ d− 1.

Conclude the result by Theorem 3.5. �

Proof of Theorem 3.5. Write g̃ = g + v, h̃ = h+ u, then we want

f − gh− uv = gu+ fv.

That is to say, (u, v) is a fixed point of

(u, v) 7→ θ−1
g,h(f − gh− uv) = φ(u, v).

It suffices to prove that φ is contracing on

B = {(u, v) ∈ Pk ⊕ Pn : v0(u, v) ≥ δ := c+ v(R)}.

In fact,

v0(f − gh− uv) ≥ inf(v0(f − gh), v0(uv))
≥ inf(c+ 2δ, 2c+ 2δ) = c+ 2δ.

Since θ−1
g,h has entries in R−1OK , v(φ(u, v)) ≥ c+2δ− δ = c+ δ. Hence φ(B) ⊆ B.

For any (u, v), (u′, v′) ∈ B,

v0(φ(u, v)− φ(u′, v′))
=v0(θ

−1
g,h(u(v − v

′) + v′(u− u′)))
= inf(v0(u) + v0(v − v′)− δ, v0(v′) + v0(u− u′)− δ)
≥c+ v0(u− u′, v − v′),

thus φ is contracting. �

Example 3.7. (1) If f ∈ OK [x], α ∈ OK with v(f(α)) > 2v(f ′(α)), then there is
α̃ with v(α̃− α) > v(f ′(α)) and f(α̃) = 0.

(2) If f ∈ OK [x] is monic and α is a simple root of f in the residue field kK ,
then there is a unique lifting α̃ ∈ OK with f(α) = 0.

Definition 3.8. Let V be a vector space over K. A valuation on V is a map
v : V → R ∪ {∞} satisfying

• v(x) = +∞ ⇐⇒ x = 0;
• v(λx) = v(λ) + v(x);
• v(x+ y) ≥ inf(v(x), v(y)).

Theorem 3.9. Suppose (K, v) is complete and V is finite dimensional over K.
Then all valuations on V are equivalent and V is complete for any one of them.
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Proof. Fix a basis {ei} of V . Define

v0(
∑

xiei) = inf v(xi).

Then
v(
∑

xiei) ≥ inf
i
(v(xi) + v(ei)) ≥ v0(x) + infiv(ei).

Suppose v(
∑
x
(k)
i ei) tends to infinity but infi v(x

(k)
i ) tends to infinity. There is

c > 0 and 1 ≤ i ≤ n such that v(x
(k)
i ) ≤ c for any k, since v((x(k)i )−1

∑
x
(k)
i ei) tends

to infinity, ei lies in the closure of the space spanned by e1, . . . , ei−1, ei+1, . . . . �
Theorem 3.10. Suppose (K, v) is complete and L is a finite field extension of K,
then there is a unique extension of v as a field valuation on L:

v(x) =
1

[L : K]
v(NL/K(x)).

Let GK = Gal(K/K) be the absolute Galois group.

Corollary 3.11. (1) v extends uniquely to K.
(2) GK acts on K via isometrics v(σx) = v(x).

(3) GK acts on K̂ continuously. Thus GK = Aut(K̂/K).

Theorem 3.12. (1) C = K̂ is algebraic closed.
(2) The residue field kC = kK = kK .

3.2. No 2πi in Cp. Let Cp = Q̂p be the completion of the algebraic closure of

Qp with v(C×
p ) = vp(Q

×
p ) = Q. This field is non-canonically isomorphic to C

under assuming the Axiom of Choice. We have an action of the Galois group
GQp = Gal(Qp/Qp) = Autcont(Cp) on Cp.

Theorem 3.13 (Ax-Sen-Tate). For any closed subgroup H of GQp , CH
p is the

completion of QH

p .

Let F be a field of characteristic zero with absolute Galois groupGF = Gal(F/F ).
Let χ : GF → Z×

p be the cyclotomic character, ζpn ∈ F be a primitive pn-th root

of unity. Then for any σ ∈ GF , σ(ζpm) = ζ
χm(σ)
pm with χm(σ) ∈ (Z/pmZ)×.

We have χm(στ) = χm(σ)χm(τ) and χm(σ) = χm−1(σ) in (Z/pm−1Z)×. Thus
χ(σ) = (χm(σ))m∈N ∈ lim←−(Z/p

mZ)× = Z×
p ,

and χ(στ) = χ(σ)χ(τ), σ(ζ) = ζχ(σ) for any ζ ∈ µp∞ .

Now 2πi = pn log e
2πi
pn and σ(2πi) = pn log ζ

χ(σ)
pn = χ(σ)2πi. Tate proved that if

σ(x) = χ(σ)x for any σ ∈ GQp , then x = 0.

3.3. p-adic logarithm.

Lemma 3.14. If vp(x) > 0, then

log(1 + x) =
∑
n≥1

(−1)n−1

n
xn

converges in Cp and

log(1 + x+ y + xy) = log(1 + x) + log(1 + y), vp(x), vp(y) > 0.

Proof. Since vp(
(−1)n

n xn) = nvp(x) − vp(n) ≥ nvp(x) − logn
log p tends to infinity as n

tens to infinity, the convergent is proved. Since

log(1 +X + Y +XY ) = log(1 +X) + log(1 + Y )

holds as power series. Take X = x and Y = y, then both sides are convergent. �
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Proposition 3.15. If L ∈ Cp, then there exists a unique logL : C×
p → Cp satisfying

(1) logL(xy) = logL(x) + logL(y);
(2) logL(p) = L;
(3) logL(x) =

∑
n≥1

(−1)n−1

n (x− 1)n if vp(x− 1) > 0.

Remark 3.16. Choosing L amounts to choosing a branch of p-adic logarithm. Take
L = 0, we get Iwasawa logarithm log. Then logL x = log x+ Lvp(x).

For any σ ∈ GQp , log σ(x) = σ(log x) by unicity.
Also, we define

expx =
∑
n≥0

xn

n!
,

which converges for vp(x) >
1

p−1 .

Proof. Choose pr for r ∈ Q so that pr+s = prps (we only need to choose p1/n!).

Then for x ∈ C×
p , x = pvp(x)y with y ∈ O×

Cp
. Let ȳ be its residue in F×

p = OCp/mCp .

Then there exists an integer N such that ȳN = 1 in F×
p , i.e., vp(y

N −1) > 0. Define

logL x = Lvp(x) +
1

N
log yN . �.

3.4. Cyclotomic extension. For n ≥ 1, let Fn = Qp(ζpn).

Proposition 3.17. en = [Fn : Qp] = (p − 1)pn−1, πn = ζpn − 1 is a uniformizer

of Fn with vp(πn) =
1
en

and 1, ζpn , . . . , ζen−1
pn is a basis of OFn over Zp.

Proof. The polynomial

ϕ =
(1 +X)p

n − 1

(1 +X)pn−1 − 1
= X(p−1)pn−1

+ · · ·+ p

kills πn. Since ϕ is Eisenstein, ϕ is irreducible and Fn = Qp[X]/ϕ. Thus en =
(p − 1)pn−1 and NFn/Qp

πn = p, this implies v(πn) =
1
en
vp(NFn/Qp

πn) =
1
en
. And

vp(F
×
n ) ⊂ 1

en
vp(Q×

p ), this implies that πn is a uniformizer.

Since 1, πn, . . . , π
en−1
n is a basis of Fn over Qp, for any x ∈ Fn,

x = x0 + x1πn + · · ·+ xen−1π
en−1
n

for xi ∈ Qp. Notice that all nonzero terms have distinct valuation, thus vp(x) =
inf vp(xiπ

i
n) and vp(x) ≥ 0 implies that vp(xi) ≥ 0 for all i. Thus 1, πn, . . . , π

en−1
n

forms a basis of OFn over Zp. �

Corollary 3.18. Let F∞ = ∪Fn, then χ : Gal(F∞/Qp)
∼−→ Z×

p .

Define Tate’s normalized trace map R : F∞ → Qp as

R(x) =
1

[Fn : Qp]
TrFn/Qp

x, x ∈ Fn.

Proposition 3.19. R extends by continuity to F̂∞ → Qp with

R(σ(x)) = R(x) = x

for x ∈ Qp, σ ∈ Gal(F∞/Qp).

Proof. We have R(1) = 1,

R(ζ) =

{
− 1

p−1 , if ζp = 1;

0, if ζp ̸= 1.

Thus R(OFn) ⊆ Zp and vp(R(x)) > vp(x) − 1. This implies that R is uniformly

continuous and it can be extended to F̂∞. �
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Theorem 3.20. For k ∈ Z and [K : Qp] <∞,

Cp(k)
GK = {x : σ(x) = χ(σ)kx,∀σ ∈ GK} =

{
K, if k = 0;

0, if k ̸= 0.

Proof. If k = 0, this follows Ax-Sen-Tate. If k ̸= 0, assume 0 ̸= x ∈ Cp(k)
GK ,

y = log x, σ(y) = y + k logχ(σ) for any σ. By Ax-Sen-Tate, y ∈ F̂∞ = (Qkerχ

p )̂ .
Then R(σ(y)) = R(y)+k logχ(σ). But R(y) ∈ Qp, σ(R(y)) = R(y), ridiculous! �

4. Fontaine’s rings and p-adic Galois representations

4.1. p-rings.

Definition 4.1. Let A be a ring and I be an ideal. Say A is separated and complete
for I-adic topology if A

∼−→ lim←−(A/I
n). In this case, the I-adic topology on A and

discrete topology on A/In turns this into an isomorphism of I-adic topology rings.

In this case,
∑
xn converges iff xn → 0, i.e., for any N , there exists n0 such that

xn ∈ IN for n ≥ n0.

Example 4.2. If (K, v) is complete, v(π) > 0, then OK is separated and complete
for π-adic topology.

Lemma 4.3. Assume A is separated and complete for π-adic topology, π is not a
zero divisor, S a system of representatives of A/π inside A. Then any x ∈ A can
be written as x =

∑
i≥0 siπ

i with si ∈ S uniquely.

Proof. There is a unique s(x) ∈ S such that x − s(x) ∈ πA. Let x0 = x, xn =
1
π (xn−1 − s(xn−1), then

x =
n∑

i=0

s(xi)π
i + πn+1xn+1.

Take si = s(xi). �

Definition 4.4. Let R be a ring of characteristic p. R is called perfect if x 7→ xp

is an isomorphism. I is perfect if R/I is perfect, i.e., x 7→ xp is bijective on I.
A is called a p-ring with residue ring R if there is π such that A is separated

and complete for π-adic topology and A/π = R, in particular, p ∈ πA. A is strict
if pA = πA. A is perfect if strict and R is perfect.

Example 4.5. (1) Zp is perfect.

(2) Let J be a set and WJ = Zp[X
p−∞

j , j ∈ J ], then

ŴJ = lim←−WJ/p
nWJ

is a perfect ring with residue ring W J = Fp[X
p−∞

j , j ∈ J ].

If A is perfect, then A/p is perfect. If R is perfect, there is a unique perfect A
with A/p = R.

4.2. Teichmüller representatives. Let A be a p-ring and R = A/π.

Lemma 4.6. If x− y ∈ πA, then xpn − ypn ∈ πn+1A.

Proof. By induction. �

For any ring S, Denote

R(S) = {x = (x(n))n∈N : x(n) ∈ S, (x(n+1))p = x(n)}.
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Proposition 4.7. We have R(A) = R(R). If x = (x(n)) ∈ R(R), let x̂(n) ∈ A be

a lifting of x(n), then (x̂(n+k))p
k

tends to x̃(n) ∈ A and x̃ = (x̃(n)) ∈ R(A).

Corollary 4.8. R(A) is a ring with ring structure as R(R), which is a perfect ring
of characteristic p.

This is an old construction of Fontaine. Scholze calls it the tilt A♭ of A.

Example 4.9. Z♭
p = R(Fp) = Fp. More generally, A♭ = A/p if A is perfect,

because if R is perfect, R(R) = R.

Remark 4.10. (1) If x ∈ R, then x = (x, x1/p, . . .) ∈ R(R) gives x̃ ∈ R(A). Then
[x] = x̃(0) is called the Teichmüller lifting of x, it’s the unique lift to A of x with
pn-th root, for any n. We have

[x] = lim
n→+∞

(x̂1/pn)p
n

.

and [xy] = [x][y].
(2) If A is strict, any x ∈ A can be written as

∑
x≥0[xi]p

i for xi ∈ R.

A question is: can we write + and × in A using this decomposition? The answer
is yes, and the tool is Witt vector.

Theorem 4.11. (1) Assume R is a perfect ring of characteristic p. There is a
unique strict p-ringW (R) unique up to unique isomorphism such thatW (R)/p = R.

(2) If A is a p-ring, A/π = R′, θ̄ : R → R′, θ̃ : R → A with θ̃(xy) = θ̃(x)θ̃(y),

then there is a unique ring morphism θ :W (R)→ A lifting θ̄ such that θ([x]) = θ̃(x).

Remark 4.12. (1) The unicity in (2) is obvious, for x =
∑

[xi]p
i ∈ W (R), θ(x) =∑

piθ̃(xi). W (R) is unique since there is a unique θ : W (R) → W (R) identity

modulo p for θ̄(x) = x and θ̃(x) = [x]. There is a unique lifting of x with pn-th
roots for any n, namely [x], thus θ = id.

(2) If R′ is perfect, Hom(W (R),W (R′)) = Hom(R,R′) for θ̃(x) = [θ̄(x)].
The Frobenius φ :W (R)→W (R) is the lifting of x 7→ xp, i.e.,

φ(
∑

[xi]p
i) =

∑
[xpi ]p

i.

(3) If A is perfect, thenW (A/p) = A. In particular, W (Fp) = Zp andW (W J ) =

ŴJ .

Now we prove that ŴJ satisfies (2). The map f : WJ → A, f(xp
−n

j ) = θ̃(xp
−n

j )

by continuity extends f to f̂ : ŴJ → A (provides A is p-adically complete). We

will show f̂([x]) = θ̃(x) for any x ∈W J . Since f̂ modulo π is θ̄, f̂([x])− θ̃(x) ∈ πA,
thus

f̂([xp
−n

])− θ̃(xp
−n

) ∈ πA
and then f̂([x]) − θ̃(x) ∈ πn+1A. In general, R can be written as W J/I for some
perfect ideal I. Let

W (I) = {
∑

pi[xi] : xi ∈ I} ⊂ ŴJ .

Lemma 4.13. W (I) is an ideal of ŴJ and we take W (R) = ŴJ/W (I).

Let U = N ⊔ N = {1, 2} × N and Σ(X) =
∑

[Xi]p
i,Σ(Y ) =

∑
[Yi]p

i ∈ ŴU , then

Σ(X) + Σ(Y ) =
∑

[si(X,Y )]pi

Σ(X)Σ(Y ) =
∑

[pi(X,Y )]pi

for si, pi ∈WU .
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Proposition 4.14. Let A be a perfect p-ring with A/p = R. For x = (xi), xi ∈ R,
let Σ(x) =

∑
[xi]p

i ∈ A. Then

Σ(x) + Σ(y) =
∑

[si(x, y)]p
i

Σ(x)Σ(y) =
∑

[pi(x, y)]p
i.

Proof. Let θ̄ : WU → R, θ̄(Xi) = xi, θ̄(Yi) = yi and θ̃ : WU → A, θ̃(x) = [θ̄(x)],

then there is a unique θ : ŴU → A with θ([x]) = [θ̄(x)]. Now

Σ(x) + Σ(y) = θ(Σ(x)) + θ(Σ(y)) = θ(Σ(x) + Σ(y))

=θ(
∑

[si(x, y)]pi) =
∑

pi[θ̄(si(x, y))] =
∑

pi[si(x, y)].

Similar for product. �
Proof of Lemma 4.13. Σ(0) = 0 implies that Si has no constant term and W (I) is
stable under addition. Σ(x) = Σ(y) = 0 if x = 0 or y = 0 implies pi has no term of

degree 0 in X or Y . This implies that W (I) is stable by multiplication by ŴJ . �

4.3. The ring Ẽ+. R(A) is a perfect ring of characteristic p. Define Ẽ+ =
R(OCp) = R(OCp/p) (i.e., Fontaine’s R or Scholze’s OC♭

p
). The Galois group GQp

acts via the action on every component.

If x = (x(n)) ∈ Ẽ+, let x♯ = x(0), then (xy)♯ = x♯y♯. Let vE(x) = vp(x
♯).

Theorem 4.15. (1) Ẽ+ is a perfect ring of characteristic p, vE is a valuation

on Ẽ+ for which it is complete.
(2) GQp acts continuously, compatible with ring structure, commutes with x 7→

xp.
(3) Ẽ := FrẼ+ = Ẽ+[ 1ϖ ] for any ϖ with vE(ϖ) > 0 is algebraically closed.

Proof. (1) One can check that vE is a valuation directly. If vE(x − y) ≥ pm, then
vE(x

1/pm − y1/pm

) ≥ 1 and vp(x
(m) − y(m)) ≥ 1, i.e., x(m) = y(m) in OCp/p. Thus

x(i) = y(i) in OCp/p for i ≤ m. Since the topology of Ẽ+ is induced by the product

topology of discrete topology on OCp/p, Ẽ
+ is complete for vE .

(2) GQp respects the ring structure obvious. Since vE(σ(x)) = vp(σ(x
♯)) =

vp(x
♯) = vE(x), GQp acts by isometries.

Let M ≥ 0, choose pn ≥ M , y ∈ OQp
with vp(y − x(n)) ≥ 1. There is a finite

Galois extension K/Qp with y ∈ K. For σ ∈ GQp and τ ∈ GK ,

στ(x(n))− σ(x(n)) = στ(x(n) − y)− σ(x(n) − y)
has valuation ≥ 1, thus vE(στ(x)− σ(x)) ≥ pn ≥M , i.e., σ 7→ σ(x) is continuous.

(3) It’s enough to prove that for any unitary P in Ẽ+[X] has a root in Ẽ+. Let

P = Qpk

with Q′ ̸= 0. We may assume (P, P ′) = 1, then there exist U, V ∈ Ẽ+[X],

UP + V P ′ = ϖ for some ϖ ∈ Ẽ+ with vE(ϖ) > 0.

Write P (X) = Xd+ad−1X
d−1+ · · ·+a0 with ai = (a

(n)
i ). Choose pN > 2vE(ϖ).

Choose (x(n)) ∈ Ẽ+ such that P (i)(x(N)) = 0 where P (i)(X) = Xd + a
(i)
d−1X

d−1 +

· · ·+ a
(i)
0 ∈ OCp [x]. Then P (x)

(N) = 0 in OCp/p, thus

vE(P (x)) ≥ pN > 2vE(ϖ) ≥ 2vE(P
′(x)).

By Hensel’s lemma, P has a root y with vE(y − x) ≥ vE(P (x))− vE(P ′(x)). �

Fix ε = (1, ε(1), . . .) ∈ Ẽ+ with ε(1) ̸= 1. Then ε(n) is a primitive pn-th root of
unity and

vE(ε− 1) = lim
n→+∞

pnvp(ε
(n) − 1) =

p

p− 1
> 0.
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Proposition 4.16. If σ ∈ GQp , σ(ε) = εχ(σ) =
∑(

χ(σ)
i

)
(ε− 1)i.

If x ∈ OCp , note by x♭ any element of Ẽ+ with (x♭)♯ = x. Note that x♭ is only

unique up to εZp .

Since vE(ε− 1) > 0, EQp = Fp((ε− 1)) ↩→ Ẽ implies E = Esep
Qp

↩→ Ẽ.

Theorem 4.17 (Fontaine-Wintenberger). (1) Ẽ is the completion of E for
vE. If H = kerχ, then H acts trivially on EQp and H ↩→ Gal(E/EQp).

(2) H ≃ Gal(E/EQp).

Remark 4.18. We get a déversage

1→ GFp((T )) → GQp

χ−→ Z×
p → 1.

This is very useful to study GQp and its representations.

4.4. The ring Ã+ =W (Ẽ+). Any x ∈ Ã+ can be written uniquely as
∑

[xi]p
i for

xi ∈ Ẽ+. It commutes with GQp-action and φ-action.

Theorem 4.19. (1) θ : Ã+ → OCp , θ(
∑

[xi]p
i) =

∑
pix♯i is a surjective ring

morphism commuting with GQp-actions.
(2) ker θ is principal and x ∈ ker θ is a generator if and only if vE(x0) = 1.

Proof. (1) θ̄ : Ẽ+ → OCp/p and θ̃ : Ẽ+ → OCp , θ̃(x) = x♯ give the unique θ with

θ([x]) = x♯.

(2) Define x̄ = x0 if x =
∑

[xi]p
i. If θ(x) = 0, then x♯0 = −

∑
i≥1 p

ix♯i , thus

vp(x
♯
0) ≥ 1 and vE(x0) ≥ 1. If θ(x) = θ(y) = 0 and vE(x̄) = 1, vE(ȳ) ≥ 1,

then there is a0 ∈ Ẽ+ such that ȳ = x̄a0, y = x[a0] + py1 with θ(y1) = 0. Thus
y = x(

∑
[ai]p

i). �

For example, [p♭]− p and

ω =
[ε]− 1

[ε1/p]− 1

are two different generators of ker θ.

The natural topology on Ã+ is (p, [p♭]) = (p, ker θ)-adic topology, and on Ẽ+

is vE or p♭-adic topology. Then Ã+ → Ẽ+ is continuous for the natural topology

and the natural topology turns the bijection (Ẽ+)N → Ã+ into a homeomorphism.

The basis for open sets are x+ pnÃ+ + ωk−1Ã+ for n, k ∈ N. The action of GQp is
continuous under this topology (but not for the p-adic topology).

We have

σ([ε]) = [σ(ε)] = [εχ(σ)] = [ε]χ(σ) =

+∞∑
k=0

(
χ(σ)

k

)
([ε]− 1)k.

4.5. The ring B+
dR and the field BdR. We extend θ to Ã+[ 1p ] → Cp, it’s still a

ring morphism with kernel generated by ω. Let B+
dR be the completion of Ã+[ 1p ]

for the (ker θ)-adic topology, i.e.,

B+
dR = lim←− Ã

+[
1

p
]/(ker θ)k.

This is a complete discrete valued ring with residue field Cp. The valuation vH is
normalized by vH(ω) = 1. Since θ commutes with the action of GQp , ker θ is stable

by GQp and GQp acts on B+
dR.

Then natural topology on B+
dR is defined as follows: the basis of open sets are

x + pnÃ+ + ωk+1B+
dR. This is the projective limit topology, each B+

dR/(ker θ)
k
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endowed with the x + pnÃ+ as a basis of open sets. B+
dR is a Fréchet space as a

projective limit of Banach spaces. The GQp-action is continuous.

Lemma 4.20. If x ∈ B+
dR, vp(θ(x)) > 0, then

log(1 + x) =
∞∑

n=1

(−1)n−1

n
xn

converges in B+
dR and

log(1 + σ(x)) = σ(log(1 + x)).

Proof. Choose a ∈ N with avp(θ(x)) ≥ 1, then xa ∈ pÃ+ + ωB+
dR. Write xa =

pu+ωv and n = aq+ r with 0 ≤ r < a− 1. Assume v ∈ p−NkÃ+ +ωk+1B+
dR, then

xn = xr(xa)q = xr(pu+ ωv)q ∈ pq−kNkÃ+ + ωk+1B+
dR.

Since q is nearly n/a, xn/n tends to zero modulo ker θ. �
Now

t = log[ε] =
+∞∑
n=1

(−1)n−1

n
([ε]− 1)n

converges in B+
dR since vp(θ([ε]− 1)) > 0. And

σ(t) = log σ([ε]) = log[ε]χ(σ) = χ(σ) log[ε] = χ(σ)t,

that is to say, t is the p-adic analogy of 2πi.

Proposition 4.21. t is a generator of ker θ, in particular, t ̸= 0.

Proof. Since [ε]− 1 = ω([ε1/p]− 1),

θ(
t

ω
) = θ(

t

[ε]− 1
)θ([ε1/p]− 1) ̸= 0. �

Let BdR = B+
dR[

1
t ] be the fraction field of B+

dR. We extend the action of GQp by

σ( 1t ) =
1

χ(σ)t .

Theorem 4.22. (1) Q̄p is a subfield of B+
dR. More precisely, θ induces an isomor-

phism for the separable closure of Qp inside B+
dR to Qp.

(2) If [K : Qp] <∞, (BdR)
GK = K.

Proof. (1) Let P ∈ Qp[X] be the minimal polynomial of x ∈ Qp with (P, P ′) = 1.

Let x̂ ∈ B+
dR satisfy θ(x̂) = x, then vH(P (x̂)) ≥ 1 and vH(P ′(x̂)) = 0. By Hensel’s

lemma, P has a unique root in x̂+ ωB+
dR.

(2) If x ∈ BGK

dR − {0}, write x = tky with y ∈ B+
dR and θ(y) ̸= 0. Then

σ(θ(y)) = χ(σ)−kθ(y).

by Tate’s lemma, k = 0 and θ(y) ∈ K, and then x − θ(x) is fixed by GK with
vH > 0. Finally x = θ(x) ∈ K. �

Remark 4.23. (1) Can the inclusion Qp ↩→ B+
dR extend to Cp continuously? No,

because Qp is dense in B+
dR.

(2) By Ax-Sen-Tate, t is not in the closure of Qp(µp∞) in B+
dR.

Define a sequence of sub-rings of Q̄p,

O(0) = OQ̄p
, O(k+1) = ker(O(k) → O(k) ⊗ Ω1

O(k)/Zp
).

They have a basis of open subsets x+ pnO(k) and

B+
dR = lim←−

k

(lim←−
n

(O(k)/pnO(k))[
1

p
]).
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4.6. p-adic Galois representation. Let K be a finite extension of Qp and GK =

Gal(Qp/K). A Qp-representation of GK is a finite dimensional Qp-vector space V
endowed with a continuous linear action of GK .

If dimV = d with basis e1, . . . , ed, let Uσ = (ai,j) be the matrix of σ, then σ 7→ Uσ

is a continuous group homomorphism GK → GLd(Qp), where 1 + pnMd(Zp) is a
basis of open subgroups of GLd(Qp).

Example 4.24. (1) k ∈ Z, V = Qp(k) = Qpe(k), where σ(e(k)) = χ(σ)ke(k).

(2) Let E/K be an elliptic curve, then GK acts on E(K)[pn] ≃ (Z/pnZ)2 con-
tinuously. Let

Tp(E) = lim←−
n

E(ovK)[pn]

be the Tate module, then Tp(E) is a Zp-module of rank 2 with continuous GK-
action. In fact, Tp(E) = Zp ⊗ H1(E(C),Z). Let Vp(E) = Qp ⊗ Tp(E), this is a
Qp-representation of dimension 2.

(3) Let X/K be a curve of genus g with Jacobian J and Vp(J) = Tp(J) ⊗ Qp,
this is a Qp-representation of dimension 2g.

(4) H1
ét(XK ,Q(k)) is a Qp-representation of GK if X is an algebraic variety

defined over K.
(5) Let V be aQp-representation, then V

∗ = Hom(V,Qp) is also aQp-representation
under σ.ℓ(v) = ℓ(σ−1.v) and the matrix is tU−1

σ under the dual basis.

To study Qp-representation of GK , there is a very fruitful strategy of Fontaine.

• define rings B with an action of GK with extra structures stable by GK ,
e.g., B = BdR and FiliBdR = tiB+

dR, i ∈ Z.
• DB(V ) = (B ⊗ V )GK and D∗

B = HomGK (V,B) = (B ⊗ V ∗)GK are BGK -
modules (BGK is a ring) with extra structures.

The art is to construct interesting B’s, Fontaine is a master: B+
dR, BdR, Bcris, Bst.

Example 4.25. DdR(V ) = (BdR ⊗ V )GK is a K-vector space with filtrations.

If e1, . . . , ed is a basis of B⊗V over B, Uσ is the matrix of σ, then Uστ = Uσσ(Uτ ).
Say that V is B-admissible if there is a basis in which Uσ = 1 for all σ. If you
start from any Uσ, that’s equivalent to say, there exists M ∈ GLd(B) such that
Uσσ(M) =M .

Proposition 4.26. If B is a field, BGK is a field and dimBGK DB(V ) ≤ dimV
with equality iff V is B-admissible.

Proof. Let x1, . . . , xr ∈ DB(V ) ⊂ B ⊗ V dependent over B. Assume λ1x1 + · · · +
λrxr = 0, take a minimal one and λ1 = 1. Then

x1 + σ(λ2)x2 + · · ·+ σ(λr)xr = 0

and

(σ(λ2)− λ2)x2 + · · ·+ (σ(λr)− λr)xr = 0.

By minimality, σ(λi) = λi and λi ∈ BGK . Thus

dimBGK DB(V ) ≤ dimB(B-space generated by DB(V )) ≤ dimV.

The equality holds iff there is a basis of B ⊗ V with elements in DB(V ), i.e., V is
B-admissible. �

Proposition 4.27. V is B-admissible iff V ∗ is also B-admissible.

Proof. That’s because if Uσσ(M) =M , then tU−1
σ σ(tM−1) = tM−1. �

Proposition 4.28. V is Qp-admissible iff GK acts through a finite quotient.
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Proof. ⇒: Uσ =Mσ(M)−1 for some M ∈ GLd(L) with L/Qp finite Galois.
⇐: Pick such L withH = Gal(L/Qp), then for any α ∈ L, letM =

∑
τ∈H τ(α)Uτ ,

then

Uσσ(M) =
∑
τ∈H

Uσστ(α)Vτ =
∑
τ∈H

στ(α)Uστ =M.

We want detM ̸= 0. det(
∑
XτUτ ) =

∑
Xd

τ detUτ + · · · , it’s nonzero because
Arthur’s independence of characters. �

Theorem 4.29. (1) Qp(k) is Cp-admissible iff k = 0 (Tate’s theorem).
(2) V is Cp-admissible iff IK acts through a finite quotient where

0→ IK → GK → Gal(Fp/kK)→ 1.

Remark 4.30. (1) Qp(k) is BdR-admissible (=de Rham), thanks to t−k.
(2) Fontaine conjectures that H1

ét(XK̄ ,Qp(k)) are de Rham.
(3) We are going to prove Vp(J) is de Rham if J is the Jacobian of curve X/K.

5. p-adic abelian integral

5.1. Lubin-Tate formal groups. Assume h = [K : Qp] <∞, kK = Fq, q = pf , π
is a uniformizer of K. Since xq = x in Fq, x

q − x ∈ πOK for x ∈ OK . Then OK ⊃
W (kK) and OK =W (kK)[x]/(ϕ) for an Eisenstein polynomial ϕ. K0 =W (kK)[ 1p ]

is the maximal unramified subfield of K, and K/K0 is totally ramified of degree
e = deg ϕ where h = ef . Let P be a polynomial with

P ≡ πX +Xq modπX2OK [[X]].

Lemma 5.1. If a1, . . . , ad ∈ OK and ℓ = a1X1+ · · ·+adXd, then there is a unique
Fℓ ∈ ℓ+ I2 where I = (X1, . . . , Xd) ⊂ Λ = OK [[X1, . . . , Xd]], such that

P (Fℓ(X1, . . . , Xd)) = Fℓ(P (X1), . . . , P (Xd)).

Proof. We will construct Fn ∈ Λ such that Fn+1−Fn ∈ In+1 and P (Fn)−Fn(P ) ∈
πIn+1, then we can take F1 = ℓ and Fℓ = limFn. We have

P (ℓ) = πℓ+ ℓq ≡ πℓ+
d∑

i=1

aqiX
q
i modπI2,

ℓ(P ) = πℓ+
d∑

i=1

aiX
q
i ,

P (ℓ)− ℓ(P ) ≡
∑

(aqi − ai)X
q
i ≡ 0modπI2.

Assume Fn+1 = Fn +Rn where Rn is homogeneous of degree n+ 1, then

P (Fn+1) ≡ P (Fn) + πRn +Rq
n modπIn+1

Fn+1(P ) ≡ Fn(P ) + πn+1Rn +Rn(X
q)modπIn+1

Take Rn = (P (Fn)−Fn(P ))n+1

πn+1−π ∈ OK [[X1, . . . , Xd]], then

P (Fn+1)− Fn+1(P ) ≡ Rn(X)q −Rn(X
q) ≡ 0modπIn+1. �

Denote

X ⊕ Y = FX+Y ∈ OK [[X,Y ]],

then

P (X)⊕ P (Y ) = P (X ⊕ Y )

and

X ⊕ Y ≡ X + Y mod I2.
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For a ∈ OK , [a].X = FaX ∈ OK [[X]], then

P ([a].X) = [a].P (X)

and

a[X] = aXmod I2.

In particular, [π].X = P by unicity.

Theorem 5.2. (1) ⊕ is a commutative formal group law Γ, i.e.,

X ⊕ Y = Y ⊕X, (X ⊕ Y )⊕ Z = X ⊕ (Y ⊕ Z), ([−1].X)⊕X = 0.

(2) a 7→ [a].X is a ring homomorphism OK ↩→ End Γ, i.e.,

[a].(X⊕Y ) = ([a].X)⊕([a].Y ), ([a].X)⊕([b].X) = [a+b].X, [a].([b].X) = [ab].X.

Proof. Since

(X ⊕ Y )⊕ Z ≡ X + Y + Z ≡ X ⊕ (Y ⊕ Z)mod I2,

P ((X ⊕ Y )⊕ Z) = P (X)⊕ P (Y )⊕ P (Z) = P (X ⊕ (Y ⊕ Z)),
we have (X ⊕ Y )⊕ Z = X ⊕ (Y ⊕ Z) by unicity. Similar for other results. �

(Γ,⊕) is a Lubin-Tate formal group attached to (K,π).

Proposition 5.3. (1) If P1, P2 as above, then there is a unique G ∈ X+π2OK [[X]]
such that G(P1(X)) = P2(G(X)).

(2) G(X ⊕1 Y ) = G(X) ⊕2 G(Y ), G([a]1.X) = [a]2.G(X), i.e., G is an isomor-

phism (Γ1,⊕1)
∼−→ (Γ2,⊕2).

Proof. By unicity. �

Example 5.4. K = Qp, P = (1 +X)p − 1, then

X ⊕ Y = (1 +X)(1 + Y )− 1, [a].X = (1 +X)a − 1,

i.e., the multiplicative formal group Ĝm.

Remark 5.5. A formal group law over OK turns mCp into a group.

Theorem 5.6. Let (Γ,⊕) be the Lubin-Tate formal group attached to (K,π), define
the Tate module

Tπ(Γ) = {(0, u1, u2, . . .) : un ∈ mCp , [π]un+1 = un}.

(1) Tπ(Γ) is an OK-module of rank 1.
(2) If (0, u1, . . .) is a generator (i.e., u1 ̸= 0), then Kn = K(un) is a total-

ly ramified abelian extension of K with Galois group (OK/π
n)×, where vi(un) =

1
(q−1)qn−1 vp(π).

(3) Let K∞ = ∪Kn, then Gal(K∞/K) = O×
K . Let χL : GK → Gal(K∞/K) →

O×
K be the Lubin-Tate character, then σ(un) = [χL(σ)].un.

Remark 5.7. (1) For (Qp, p), Γ = Ĝm, this becomes the cyclotomic theory.
(2) By local class field theory,

1→ O×
K → Gab

K → Gal(F̄p/Fq)→ 1,

thus Kab = ∪(N,p)=1K∞(µN ). Lubin-Tate makes LCF completely explained. If

[K : Q] <∞, we have a description of Gab
K but not of Kab (Hilbert’s 12th problem).

(3) Tp(Γ) ≃ Tπ(Γ), p = πea, a ∈ O×
K . If (un) ∈ Tπ(Γ), then (un = [a−n].uen) ∈

Tp(Γ).
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Proof. For a ∈ OK , (un) ∈ Tπ(Γ), ([a].un) ∈ Tπ(Γ) makes Tπ(Γ) a OK-module. We
can assume [π].X = πX + Xq. Then Tπ(Γ) has no π-torsion. u ∈ [π].Tπ(Γ) iff
u1 = 0, thus u 7→ u1 injects

Tπ(Γ)/πTπ(Γ) ↩→ Γ[π] = {x : πx+ xq = 0}.
Thus Tπ(Γ) has rank ≤ 1 with equality if it is not 0.

If it is not 0, u is a generator iff u1 ̸= 0, u1 is a solution of uq−1
1 + π = 0 and

un+1 is a solution of uqn+1 + πun+1 = un, where X
q + πX − un is Eisenstein. By

induction, we get Kn/K is totally ramified and πn is a uniformizer.

Tπ(Γ)/π
nTπ(Γ) ≃ Γ[πn] ≃ OK/π

n.

Since un ∈ Γ[πn] − Γ[πn+1], for σ ∈ GK , σ([π] − x) = [π].σ(x), σ(un) ∈ Γ[πn] −
Γ[πn+1], thus there is χL,n(σ) ∈ (OK/π

n)× such that σ(un) = [χL,n(σ)].un. Hence

Gal(Kn/K)
∼−→ (OK/π

n)× and χL = lim←−χL,n : Gal(K∞/K)
∼−→ O×

K . �

χL : GK → O×
K is a 1-dimensional representation of GK over K, then it is a h-

dimensional representation of GK over Qp. Going to prove that this representation
if de Rham, denote Vπ(Γ) = K ⊗OK

Tπ(Γ), HomGK
(Vπ(Γ), B

+
dR) is of dimensional

h. We are going to prove that using “periods” of Lubin-Tate formal groups.
Define the logarithm

∂f(X) =
f(X ⊕ Y )− f(X)

Y
|Y=0,

then if t∗af(X) := f(X ⊕ a), t∗a ◦ ∂ = ∂ ◦ t∗a. We have ∂f(X) = u(X) df
dX (X) where

u(X) = (X⊕Y−X
Y )Y ∈ 1 +XOK [[X]]. Write

1

u(X)
= 1 + a1X + a2X

2 + · · · ,

let

ℓ(X) =

∫
dX

u(X)
= X + a1

X2

2
+ · · · .

ℓ(X) /∈ OK [[X]] but it converges on mCp . We have ℓ(X ⊕ Y ) = ℓ(X) + ℓ(Y ). ℓ is
the logarithm of (Γ,⊕) and

X ⊕ Y = ℓ−1(ℓ(X) + ℓ(Y )).

Example 5.8. For Γ = Ĝm, u(X) = 1 +X and ℓ(X) = log(1 +X).

We have ℓ([a].X) = aℓ(X) if a ∈ OK .

Theorem 5.9 (Cartier-Harda). ℓ(X) =
∑

n≥1
Xqn

πn is the logarithm of a Lubin-

Tate attached to (K,π).

Let P = Xq + πX, Q0 = Xq−1 + π, Qn+1 = Qn ◦ P .

Proposition 5.10. ℓ(X) = X
∏

n≥0
Qn

π .

Proof. Qn = π + an,1X + · · · , then
Qn+1 = π + an,1(X

q + πX) + · · · .
vp(an,q) tends to zero. Thus π−1Qn − 1 tends to zero, and the product converges.

Let F = X
∏ Qn

π , then F ◦ P = πF and ℓ ◦ P = πℓ, thus

(F − ℓ)(P ) = π(F − ℓ)
and F − ℓ = a2X

2 + · · · , and we have F = ℓ. �

We have that the zeroes of ℓ are exactly Γ[π∞].
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5.2. Periods of Lubin-Tate groups. Assume K/Qp is Galois, g ∈ Gal(K/Qp).

There is a unique 0 ≤ i ≤ f−1 such that g(x) = xp
i

on kK . Then ℓg(X) = g(ℓ(Xpi

))
if

ℓ(X) = X + a2X
2 + · · · ,

ℓg(X) = Xpi

+ g(a2)X
2pi

+ · · · .

Lemma 5.11. (1) ℓg(X⊕Y )−ℓg(X)−ℓg(Y ) ∈ π−NOK [[X,Y ]] (quasi-logarithm).
(2) ℓg([a].X)− g(a)ℓg(X) ∈ π−NOK [[X]] for a ∈ OK .

Proof. (1) We have g(Xpi ⊕ Y pi

) − (X ⊕ Y )p
i

= πR for R ∈ OK [[X,Y ]] because

g(x) ≡ xpi

mod π and x 7→ xp
i

is a ring homomorphism.

ℓg(X ⊕ Y ) = g(ℓ((X ⊕ Y )p
i

)) = (g ◦ ℓ)(g(Xpi⊕Y pi

)− πR).

Now use the Taylor expansion. Let F = ℓ′ ∈ OK [[X]], notice that g(ℓ(Xpi⊕Y pi

)) =
ℓg(X) + ℓg(Y ), we have

ℓg(X ⊕ Y )− ℓg(X)− ℓg(Y ) =
∑
n≥1

g(F [n−1](Xpi

⊕ Y pi

))
πn

n
R

where F [k] := 1
k!F

(k). Since (Xa)[k] =
(
a
k

)
Xa−k, F [k] preserves integral coefficients.

Thus there is N such that πn

n ∈ π
−NOK and then

(2) is similar to (1). �

Proposition 5.12. u ∈ Tπ(Γ), ûn ∈ Ã+ with θ(ûn) = un, then g(π)nℓg(ûn) has
a limit

∫
u
dℓg in B+

dR, which is nonzero for nonzero u. Moreover, for σ ∈ GK ,

σ(
∫
u
dℓg) = g(χL(σ))

∫
u
dℓg =

∫
σ(u)

dℓg. Thus ℓg ∈ HomGK
(Tπ(Γ), B

+
dR) spans a

dimension [K : Qp] vector space, which implies that Tπ(Γ) is de Rham.

Proof. Let K0 =W (kK)[ 1p ]. Consider

θ : OK ⊗OK0
Ã+ → OCp

θ(
∑
i≥0

[xi]π
i) =

∑
x♯iπ

i.

Then ker θ is generated by ϖ = [π♭]− π. Since

θ([π].ûn+1) = [π].θ(ûn+1) = [π].un+1 = un,

we have [π].ûn+1 = un + xϖ for some x.

g(π)n+1ℓg(ûn+1)− g(π)nℓg(ûn) = g(π)n(g(π)ℓg(ûn+1)− ℓg([π].ûn+1 − xϖ)).

By Lemma,

g(π)ℓg(ûn+1)− ℓg([π].ûn+1) ∈ π−N (OK ⊗ Ã+).

Now

ℓg([π].ûn+1−xϖ)−ℓg([π].ûn+1) ∈
∑
n≥1

ϖn

n
(OK⊗Ã+) ∈ π−N(k)(OK⊗Ã+)+ϖk+1B+

dR

bounded mod ϖk+1 for any k, thus bounded in B+
dR. Hence ℓg(ûn) is bounded and

g(π)nℓg(ûn) tends to zero.

By this, the limit is independent of the choice of ûn. We may take σ̂(un) = σ(ûn)
and then

σ(

∫
u

dℓg) = g(χL(σ))

∫
u

dℓg =

∫
σ(u)

dℓg.
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Since [a].ûn = [̂a].un + xϖ, by Lemma,

ℓg([a].ûn)− g(a)ℓg(ûn) ∈ π−NOK ⊗ Ã+.

Then

ℓg([a].ûn + xϖ)− ℓg([a].ûn) ∈
∑
n≥1

ϖn

n
)(OK ⊗ Ã+)

is bounded. The rest part is similar.
For u = (0, u1, . . .) ∈ Tπ(Γ) with u1 ̸= 0, i.e., u is a generator of Tπ(Γ), then

vp(un) =
1

(q − 1)qn−1
vp(π).

Since

ℓ(X) =

n−1︷ ︸︸ ︷
P ◦ P ◦ · · · ◦ P

πn−1

Qn

π

∏
k≥n

Q ◦ P k

π
.

Since the Eisenstein polynomial Qn is the minimal polynomial of un over K,
Qn(ûn) ∈ ker θ is a generator. Thus

vp(θ(
Qn(ûn)

ϖ
)) = 0.

Since
θ(Q ◦ P k(ûn))

π
=
Q ◦ P k(un)

π
= Q(0)/π = 1.

vp(P ◦ · · · ◦ P (un)) = vp([pi
n−1].un) = vp(u1) =

vp(π)

q − 1
.

Since the valuation of θ(πn ℓ(ûn)
ϖ ) is vp(π) +

1
p−1vp(π) is independent of n,

θ(πn ℓ(ûn)

ϖ
)→ θ(

∫
u
dℓ

ϖ
)

is nonzero. �

Let K/Qp be a finite Galois extension, (Γ,⊕) be a dimension d commutative
formal group, that is, for X = (X1, . . . , Xd), Y = (Y1, . . . , Yd),

X ⊕ Y = ((X ⊕ Y )1, . . . , (X ⊕ Y )d)

with (X ⊕ Y )d ∈ OK [[X,Y ]] and (X + Y )i ≡ Xi + Yi mod deg 2, such that

X ⊕ Y = Y ⊕X,

(X ⊕ Y )⊕ Z = X ⊕ (Y ⊕ Z).
We can get a true group on (mCp)

d = Bd(0, 1
−). We have a rank k Galois

Zp-module Tp(Γ).
Let

H1
dR(Γ) =

{ω ∈ (Ω1
OK [[X]])

d=0 : Fω(X ⊕ Y )− Fω(X)− Fω(Y ) ∈ K ⊗OK [[X]] for dFω = ω}
{dF : F ∈ K ⊗OK [[X]]}

.

We can write ω = f1 dx1 + · · ·+ fd dxd for fi ∈ OK [[X]].

Theorem 5.13. (1) dimK H1
dR(Γ) = k = dimZp Tp(Γ).

For ω quasi-log, (un) ∈ Tp(Γ), ûn ∈ (Ã+)d, θ(ûn) = un, the limit of pnFω(ûn)
exists and does not depend on ûn, which is called the period

∫
u
ω ∈ B+

dR of ω. It’s
zero for ω = dF for some F ∈ K ⊗OK [[X]].
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(2)

H1
dR(Γ)× Tp(Γ) −→ B+

dR

(ω, u) 7−→
∫
u

ω

is linear, commutes with GK-action. It respects filtrations if ω ∈ Ω1
inv(Γ), then∫

u
ω ∈ tB+

dR.

H1
dR(Γ) ↩→ HomOK

(Tp(Γ), B
+
dR)

implies Tp(Γ) is de Rham.

5.3. p-adic integration. Assume [K : Qp] < +∞, X/K a smooth projective curve
with Jacobian J . Fix ι : X → J . For ω ∈ Ω1

K(X), we want to define Fω =
∫
ω,

which satisfies

(1) Fω locally analytic outside the poles of ω;
(2) dFω = ω.

In the complex case, Fω will be multivalued. But in the p-adic world, Fω can be
defined around each point, but no analytic continuation because balls are disjoint.
There will be two many Fω because of the locally constant functions. On abelian
varieties, the group structure will help figure out the Fω we want. So, for general
varieties, we will define the p-adic integral theory using their Albanese varieties.

For log =
∫

dx
x , choices made smaller by requiring

log xy = log x+ log y,

and

d log = id : Ga → Ga.

If furthermore fix log p = L, we will get a unique log denote by logL.
Let Z = X or J . There is an exact sequence

0 // H0(Z,Ω1) // DSK(Z)⊕ (K ⊗DTK(Z)) // (Ω1
K(Z))

d=0 // 0

We want
∫
df = f and

∫
df
f = logL f up to global constants.

Recall that there is a bijection of sets:

ι∗ : (Ω1
K(J))

d=0/{exact} ∼−→ Ω1
K(X)/{exact}

and there are three maps m,pr1, pr2 from J × J to J .

Theorem 5.14 (Theorem of square). For ω ∈ (Ω1
K(J))

d=0,

m∗ω − pr∗1ω − pr∗2ω

is exact on J × J , and can be written as dF
(2)
ω (x, y), where

F (2)
ω (x, y) = F0(x, y) +

∑
λi logL Fi(x, y)

up to constant with F0(x, y) ∈ K(J × J) and Fi(x, y) ∈ K(J × J)∗.

Theorem 5.15 (Main theorem of integration). If ω ∈ (Ω1
K(J))

d=0, then there exists

a unique Fω locally analytic on J(Cp) with dFω = ω and

Fω(X ⊕ Y )− Fω(X)− Fω(Y ) = F (2)
ω (X,Y ).

Main step of the proof:

(A) J(Cp) contains a basis {Ui} of neighborhood of 0 consists of open subgroup-
s. Furthermore, J(Cp)/Ui is a torsion group for any i (proved by formal
groups).
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(B) Formal integral ω to get an analytic function Fω on a small enough open

subgroup U of J . Then using the function F
(2)
ω which is constructed by

square theorem to continuous Fω to J and satisfy the relation in the theo-
rem.

By theorem of square, ∃ F (2)
ω (x, y) = F0(x, y) +

∑
λi logL Fi(x, y) such

that dF
(2)
ω = m∗ω − pr∗1ω − pr∗2ω.

Proof. (1)By the Theorem below.

(2)For a closed form ω ∈ (Ω1
K(J))

d=0, let F
(2)
ω be the function on J × J as in the

Theorem of square. By formally integrality, we get Fω analytic globally on some
neighborhood U of zero,

Fω = F0 +
∑

λi logL Fi.

We can take U to be a subgroup.

If ω ∈ H0(J,Ω1), we can take F
(2)
ω = 0. We want Fω([a].x) = aFω(x). For

x ∈ J(Cp), there is m such that [m].x ∈ U , we take Fω(x) =
1
mFω([m].x). Since

Fω is analytic on U ,

Fω(x⊕ y)− Fω(x)− Fω(y)

is analytic on U × U and d = 0, thus it is zero on U × U and we get the formula.

In general case, let f2(x) = F
(2)
ω (x, y) = Fω([2].x)− 2Fω(x) on U . Let

fn(x) = fn−1(x) + F (2)
ω ([n− 1].x, x) = Fω([n].x)− nFω(x)

on U , then

fn,m(x) = fn([m].x) + nfm(x) = Fω([nm].x)− nmFω(x).

Define

Fω(x) =
1

n
(Fω([n].x)− fn(x))

with n such that [n].x ∈ U , then it does not depend on n. This finishes the
proof. �

Remark 5.16. For ω ∈ H0(J,Ω1), m∗ω = pr∗1ω + pr∗2ω, we can take F
(2)
ω = 0 and

Fω(X ⊕ Y ) = Fω(X) + Fω(Y ).

It’s called the logarithm of J .

Theorem 5.17. (1) J(Cp) contains a basis of neighborhood of 0 of open subgroups.
(2) If U is one of these open subgroups, J(Cp)/U is a torsion group.

Proof. Let x1, . . . , xg ∈ K(J), dxi − ωi vanishes at 0, z 7→ (x1(z), . . . , xg(z)) is an
analytic isomorphism between some neighborhood of 0 and Bd(0, δ)

− = {x ∈ Cd |
vp(xi) > δ}. Then

xi(z1 ⊕ z2) = xi(z1) + xi(z2) + Fi(x(z1), x(z2))

for Fi ∈ (x(z1), x(z2))
2K[[x(z1), x(z2)]] converges in B2d(0, δ

−) for δ− > δ.
Let M = infi vp(Fi(x, y)), (x, y) ∈ B2d(0, δ

−), then

vp(p
kx, pky) ≥ 2k +M

if (x, y) ∈ B2d(0, δ
−). If k+M ≥ δ−, vp(Fi(p

kx, pky)) ≥ k+ δ−, thus B2d(0, k+ δ
′)

is stable by ⊕, and neighborhood is a group. For any k big enough, the inverse
image of B2d(0, k + δ−) is an open subgroup of J(Cp).

Since Qp is dense in Cp,

J(Qp)/(U ∩ J(Qp)) ≃ J(Cp)/U,
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where J(Qp) =
∪

[L:K]<∞
J(L). Since J(L) is a compact group, the image of J(L) in

J(Cp)/U is finite, thus it is torsion and then so J(Cp)/U is.
The compactness of J ⊂ Pd follows from that Pd(L) is compact since it is a union

of some
d∪

i=0

OL × · · · × OL × 1×OL × · · · × OL,

and OL is compact because [L : Qp] <∞. �

Remark 5.18. If X has a good model over OK , then J also has a good model J.
Moreover,

0→ U → J(OCp)→ J(Fp)→ 0,

where U is analytically the unit open ball Bg(0, 0
−). ⊕ on J gives an addition law

on Bg(0, 0
−) and (x⊕ y)i ∈ OK [[x, y]] gives a formal group law defined over OK .

5.4. p-adic periods of abelian integrals. Recall H1
dR = DSK(Z)

{df} and the pairing

H1
dR(Z)×H1(Z(C),Z) −→ C

(ω, u) 7−→
∫
u

ω.

For ω ∈ DSK(J), U ⊂ J affine open on which ω is holomorphic. Write U =
Spec(K[x1, . . . , xn]/I) ↩→ An. Say A ⊂ U(B+

dR) is bounded if its projection on

each A1 is bounded in B+
dR, i.e, for any k, ∃N(k) such that xi(A) ⊂ p−N(k)(Ã+ ⊗

OK) + (ker θ)k+1.
Define the Tate module

Tp(J) := {(0, u1, . . .) : un ∈ J(Cp), [p].un+1 = un}.

Theorem 5.19 (p-adic periods). (1) We can find bounded sequences (an), (bn) in
U(B+

dR) with θ(bn)⊖ θ(an) = un.

(2) pn(Fω(bn) − Fω(an)) has a limit
∫
u
ω ∈ B+

dR, which depends only on u and

the image of ω in H1
dR(J). Thus we have a pairing

H1
dR(J)× Tp(J) −→ B+

dR

(ω, u) 7−→
∫
u

ω.

It is GK-equivariant, ∫
σ(u)

ω = σ(

∫
u

ω),

respects filtration. For ω ∈ H0(J,Ω1),
∫
u
ω ∈ tB+

dR.
(3)

H1
dR(J) −→ HomGK

(Tp(J), B
+
dR)

is injective and therefore Qp ⊗ Tp(J) is de Rham.

Proof. The non-degenerate is a consequence of Riemann relation. �

Idea behind the construction of p-adic periods
∫
u
ω = lim pnFω(ûn): We say

a function natural if it’s bounded outside their poles, that is, f holomorphic on
U = Spec(K[x1, . . . , xn]/T ), f is bounded on any bounded set in U . For example,
1

1+x is bounded on vp(x) ≥ 0 and vp(1 + x) ≥ 0, but log(1 + x) is not bounded on

vp(x) > 0.
If ω ∈ DSK, Fω([p].x)− pFω(x) is natural.

pn+1Fω(ûn+1)−pnFω(ûn) = pn(pFω(ûn+1)−Fω([p].ûn+1)+Fω([p].ûn+1)−Fω(ûn)).
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Use Taylor expansion, we get the naturality.
More conception construction.
(1) Recall the universal extension

0→ H0(J,Ω1)→ J̃
π−→ J → 0.

For ω ∈ DSK(J), there exists a unique η(ω) ∈ H0(J̃ ,Ω1) invariant by transla-

tion, such that π∗ω − η(ω) = df for some f ∈ K(J̃). We can define Fη(ω) by
1
nFη(ω)([n].x), then we get a formula for Fω.

(2) Let

Ĵ(Cp) = {u = (u0, u1, . . . , un, . . . ) : un ∈ J(Cp), [p].un+1 = un},

then

0→ TpJ → Ĵ(Cp)
u7→u0−−−−→ J(Cp)→ 0.

0→ H1(J(C),Z)→ Cg → J(C)→ 0.

u ∈ Ĵ(Cp), ûn ∈ J̃(B+
dR) bounded with π(θ(ûn)) = un. then [pn].ûn converges

to ιdR(u) in J̃(B
+
dR). For u ∈ TpJ ,

∫
u
ω = Fη(ω)(ιdR(u)).

5.5. p-adic Riemann relations. Let ω1, . . . , ωg be a basis of H0(J,Ω1), π : Cg →
J(C) the projection. Then

df =

g∑
i=1

∂ifωi,

where ∂i are translate invariant differential operators. For the theta function θ
on Cg, η̃i = d (∂iθ

θ ) comes from a differential form ηi on J , i.e., π∗ηi = η̃i for

ηi ∈ DSK(J). Then ω1, . . . , ωg, η1, . . . , ηg is a basis of H1
dR(J). Moreover

g∑
i=1

∫
u

ηi

∫
v

ωi −
∫
v

ηi

∫
u

ωi = 2πi(u#v).

The theorem of the cube says

θ(z1 + z2 + z3)θ(z1)θ(z2)θ(z3)

θ(z1 + z2)θ(z2 + z3)θ(z3 + z1)
= π∗fx(x1, x2, x3), fx ∈ C(J × J × J)×.

In p-adic case, we can define logL θ with d logL θ =
∑g

i=1 Fηiωi by Green func-
tion.

Theorem 5.20. There exits a Green function G unique up to a polynomial of
degree 2 in the logarithm of J , such that∑

∅≠S⊆{1,2,3}

(−1)#SG(
⊕
i∈S

xi) = logL fx(x1, x2, x3).

The Weil pairing

⟨−,−⟩Weil : Tp(J)× Tp(J)→ Tp(µp∞) = Zpt,

where Tp(J) = Zp⊗H1(J(C),Z), ⟨u, v⟩Weil = (u#v)t. It is a big theorem that Weil
pairing is non-degenerate.

Theorem 5.21.
d∑

i=1

∫
u

ηi

∫
v

ωi −
∫
v

ηi

∫
v

ωi = ⟨u, v⟩Weil.

Since ⟨−,−⟩Weil is non-degenerate, H
1
dR(J) ↩→ HomGK

(Tp(J), B
+
dR).
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5.6. One example of application. Let K be a number field, and X/K be a
smooth proper curve, then J(K) is of the type finite group×Zn. Assume that
n ≤ g − 1, then X(K) is finite (special case of Mordell, Chabauty’s method). Let
P − 1, . . . , P − n ∈ J(K) such that J(K)/⟨P1, . . . , Pn⟩ is torsion, then Since

dimH0(J,Ω1) = g > n,

there is a nonzero ω ∈ H0(J,Ω1) such that Fω(P1) = · · · = Fω(Pn) = 0, Fω(0) = 0,
thus Fω(P ) = 0 for any P ∈ J(K). For P0 ∈ X(K), ιP0 : X → J , ι(X(K)) ⊂ J(K).
For f = Fω ◦ ιP0 locally analytic function on X, f(P ) = 0 for any P ∈ X(K). Since
X(Kp) ⊃ X(K) is compact, there exists finite set of Ui on which f is analytic and
∪Ui ⊃ X(Kp), f has a finite number of zeroes on each Ui.

Conjecture 5.22 (Caporaso-Harris-Mazur). For g ≥ 2, there exists a constant
N(g,K) such that for any X/K of genus g, |X(K)| ≤ N(g,K).

Stoll and Rabinoff proved the case n ≤ g− 2 under some technical assumptions.
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