1.

1.1.
1.2
1.3.
1.4.
1.5.
2.

2.1.
2.2.
3.

3.1.
3.2.
3.3.
3.4.
4.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
5.

5.1.
5.2.
5.3.
0.4.
9.5.

p-ADIC ABELIAN INTEGRALS

PIERRE COLMEZ

ABSTRACT. The study of complex abelian integrals, i.e., integrals of algebraic
functions of one complex variable, was a major incentive to develop complex
algebraic geometry (some 150 years ago). After briefly explaining the complex
theory, I will study its analog in the p-adic world: this provides a concrete
introduction to p-adic Hodge theory, a theory that was originated by Tate
some 50 years ago and was turned into one of most powerful tools of number

theory.

This is the note of the lectures in BICMR, Beijing from 2016/09/14 to

2016/10/26.
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5.6. One example of application 31

1. COMPLEX ABELIAN INTEGRAL ON ELLIPTIC CURVES

1.1. Building blocks of functions on C associate to a lattice. Let E/C be
an elliptic curve given by a Weierstrass equation

(1.1.1) y? =42° — gox — g3,
A be the image of H; (E(C),Z) in C by
dz

U — —.
uw Y

Then we have an isomorphism of Riemann surfaces, through which we can define
an addition on F, induced by addition on C:

a:E— C/A,
1.1.2 L
( ) P+— —x
o Y
The inverse is given by
(1.1.3) Dp iz (p,0),

where the Weierstrass o, ¢ and p functions are defined as

_ _ Z Rt
(114) o(z,A) = 2z J[ @ —Je ,
weA—{0}
d 1 1 1z
(1.L5)  C(zA) = —-logo(z,A) =~ + > (ot =+ =)
weA—{0}
d 1 1 1

Proposition 1.1. Fiz a lattice A, and let w € A, we then have the formulae
o(z+w) = o(z) exp(n(w)z + 6(w)),
where n and 0 are constants depending on w.

Proof. This argument is a consequence of

o(z+w)

dl
%7 00)

= ((z +w) —¢(2)
z+w
S ARGL

and that the last integral does not depend on z if w is in A, denoted by n(w). O

Proposition 1.2. The field of rational functions on C/A is generated by p and .
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1.2. Abel theory. Let D € Div(C/A) = Z[C/A] be a divisor on C/A, then
D= Z Ny W], Ny € Z,
weC/A

1. = 0 for almost all w. Define
deg D = an,
TrD = anw € C/A.

Denote by Div?(C/A) the subgroup of Div(C/A) consisting of all degree zero divi-
sors. For any rational function f € C(C/A)*, define

div(f) =Y vu(flw

where v,, is the order of f at w.

Theorem 1.3 (Abel). deg D =0 and tr D = 0 if and only if D = div(f) for some
fecC(C/n)*

Proposition 1.4. Let D = > n;[z] be a divisor on C such that Y n; = 0 and
> n;z; =0, then
Ha -z, A

is a rational function on C/A with divisor D = Enz(z])

Corollary 1.5. We hence have an isomorphism Ej ~ DB;E/C(%\).

Theorem 1.6. (i) For any f € C(E), ®1(f) = f o ®a can be written uniquely as

)\O+ZZ C(k b _aiaA)a

i=1 k=1

where Ao, ...k € C, a; € Cmod A, Y A\ 1 = 0. Conversely, such expression is ®} f
for some f € (C( ) Zfz)‘ul =0.
(i) The integration of f € C(E) is given by

/fO¢A—)\oz+Z)\ 1logaz—aZ+ZZ C(k (2 ay),

i=1 k=2
in the complex plane, and is a rational function on Ey if and only if \o =0, A;1 =0
for all i, and > Ni2 = 0.

1.3. Rational differential forms on E. For f € C(E), let w = fdy—”” € Q}C(E) be
a rational differential on E. Then

Prw = (fopp)dz

Definition 1.7. We say w is of the

e first kind if it is holomorphic ( <= f o ¢4 is constant);

o second kind if it has no residue ( <= A;; =0 for all i);

e third kind if it only has simple poles and residues in Z ( <= k; = 1 and
Aijq € Z for all i).

Denote by H°(E,Q'), DSK(E), DTK(E) the three kind of differential forms respec-
tively. Then
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and
DSK(E) 2 {df : f € C(E)},

DTK(E) 2 {% 1 feC(BE)*},

the right hand sides are called exact forms.

Let u be a path on E(C). For w € DSK(E), fu w depends only on the image of
u in Hy(E(C),Z). For w € DTK(E), [ wmod2miZ depends only on the image of
w in Hy (E(C),Z).

For w € DTK(E),

Paw = ( Ao+§jm< —a;, M) dz.

=1
Denote

(1.3.1) div(w) = > Aia(pala:) € DivO(E).
i=1
Then we have an exact sequence
0— HY(E, Q') - DTK(E) — Div’(E) — 0.
Notice that for f € C(E)*, div(%) = div(f). By Abel’s theorem,

Div'(E) ~
gy PO

E ni Py — ®&n; P
Hence we have a commutative diagram with exact rows and columns:

{8} ——— {div(/)}

l

0 ——H(E, Q') — DTK(E) —— Div’(E) ——= 0

|

0 — H°(E, Q') — DTK(E) /{4 } E(C) 0

0

The group H°(E, Q') on the last line is an algebraic group denoted G,. It is simply
C in our case. The elliptic curve E(C) on the last line is also an algebraic group.

It turns out that DTK(FE)/ % can be made an algebraic group as well, which is
called the universal extension of E.

Definition 1.8. For any wp, ws € A, the intersection number wy#ws is the dis-
criminant of (wy,ws) under an orientable basis of A. That is to say, for a basis
{’U)l,wg} of A with Im(wg/wl) >0,

u#v—det/dx /dx

Theorem 1.9. (1) d;, zdz « DSK(E

(2) w e DSK(E) is exact zf and only zf fuw =0 for any u.
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(3) We have the Legendre relation. For u,v € Hl(E((C),Z),

/ xdx / zdzx 92 oriudto.
u

(4) H)z(E) := DSK(E )/{df} is of dimension 2, which is generated by {d‘ “‘d‘ .
Remark 1.10. Assume FE is defined over Q. If E has complex multiplication (CM),
then

d d
o [ EE e me©).2)
has transcendental degree 2. It’s conJecturally that if E doesn’t have CM, the

transcendental degree should be 4. That’s Grothendieck’s “Hodge conjecture is
false for trivial residues”.

Proof. (1) That’s because

. dx rdx
QSA? =dz, ¢A7 = p(2)dz = ('(2)d=.
(2) Suppose ¢jw = dF on C, then F(w f ¢jw does not depend on the
choice of path and then [ w =0
If f w = 0 for any u, then F(w f ¢ w does not depend on the choice of

path. Moreover, F'(z + w) = F(z ) for any w € A. Hence F is an elliptic function
and then F' = ¢3 f for some f € C(E). Therefore w = df.

(3) By bilinearity, we may assume {u, v} is a basis of H; (E(C),Z) and [, d‘"”, " d?””
is an oriented basis. The integration of {(z) on the polygon with counterclockwise

vertices a,a + wy,a + wy + wa, a + wo, a is

/g(z) dz = 2ri,

a+wq a+wsa
/’ () - <@+wﬁﬁ&—/m (C(2) = (= + wn)) dz

a

a+wq z4wao a+wso z4wiy
/ / 7)drdz —/ / p(1)drdz
/ zdz dz / rdx dx

(4) This follows from ( ) and (3). O

Meanwhile, it is

Theorem 1.11. The pairing
(Hi(E(C),2) ® C) x Hgp(E) —

uw}—)/

is perfect.
1.4. Algebraic universal extension.
Proposition 1.12. For any w € A,

CEtw ) nwd)+y),
((z,A)

where n(w, A) = ((z +w, A) — ((2,A) and the sign depends on whether % is in A.
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Let E/C be an elliptic curve. Denote by m, prq,pry : E X E — E the morphism
m(x,y) =2+ y,pry(z,y) = z,pry(x,y) = y. For any w € QE/C, denote by
0w =m*w — priw — priw.
For any f € C(E x E), denote by
6F(z,y) = F(z®y) — F(z) — F(y).

Theorem 1.13 (Theorem of the square). (1) If w € DSK(FE), there exists a
unique F € C(E x E) up to constant such that dw = dF.
(2) If w € DTK(E), there exists a unique F € C(E x E)* up to constant such
that dw = 4£.

Proof. (1) Let dF,, be the pullback of ¢w on C, then déF,, is a pullback of (¢a X
¢da)* 0w on C x C. We want to prove that

(5Fw = Fw(Zl + ZQ) — Fw(zl) — Fw(ZQ)
is periodic of period A x A. Write

Prw = ( )\O—l—zz ((k) (z —ai,A)) dz,

i=1 k=1
then

F, —)\oz—i-zz C(k 1) (z —ai, A).

i=1 k=1
If k> 2, ¢*=1) is already periodic. Since ¢(z +w) — ((2) = n(w) if w € A,
Gi(z1,22) = (21 + 22 — ;) — ((21 — a;) — ((22 — as)

is periodic of period A x A.
(2) Write

Phw = ( )\0+Z>\C —a;,A)dz, N €Z,Y N =0.

i=1

Then we need to show that if f(z) = C;((Z b)), then % is periodic of period

A x A. But this follows from o(z 4+ w) = ()2 T0(W)5(2), 0

Theorem 1.14. There is an algebraic group E (called the universal extension of
E) with
(1) ezxact sequence of algebraic groups
0— G, — E—E—0.
(2) E(C) = DTK(E)/{%} as a group.
(3) The following diagram commutes and the rows are exact:

pry

iz CxC
0 C {Cw,n(w))wehT C/A 0

s

0 o E(C) —=— E(C) 0

where

P(21,22) = (C(z — 21) = ((2) + 22) dz
18 an isomorphism of groups. Moreover, the first row is exact as algebraic
groups.
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(4) 77*(33%9) +dzy = dF for some rational function F on E. Thus Hyp(E) can
be identified to the invariant differentials on E.
Proof. We first define E ~ C x C/(w, n(w)) as an algebraic variety.
For a point a on F(C) and a a lifting of it, we define a map
(1.4.1) (C—{a+A})xC—CxC
(1.4.2) (,A) — (z,¢{(x — a) — ¢(—a) + ).
Note the image of (x,\) and (x 4+ w, ) differ by (w,n(w)) provided w € A, so this

map induces a map s, : U, x C — C x C/(w,n(w)), where U, stands for E(C) — a.
For another point b on E(C), we similarly have a map s, : Uy x C - C x C

J(w,1(w)). Tt fay(w) = C(F — @) — (=) — C(# — b) + ((—F), then the map
(2, A) = (2, A+ fop(2)) induces an algebraic function ¢, on (U, NU,) x C, with
the property that s, = 55 0 @g.p.

Now we show that C x C/(w,n(w)) is an algebraic group. In fact, the addition
law on C x C/(w, n(w)) induces an addition on U, x C, whose formulae is given by

(z, )+ (@' N)=(x@2' A+ N + G(z,2)),
where G(z,z') is an algebraic function induced by
Cw—a) + (' —8) — ¢(~a) — C(z +2/ — ).
The isomorphism E ~ DTK(E) is defined locally by ¢, : U, x C — DTK(E),
(£, \) = (—C(z+Z—a)+((z—a)+ (& —a) — {(—a) + N)dz.
Note the result of the mapping is independent of the choice of & and a. Furthermore,
this locally defined map is in fact global since we have
o(z+i—Dbo(z —a)

wa(xv )‘) - wb(x’ At fa"b(x)) - dlogU(Z +T— G)U(Z — B>,

in which the right hand side is the logarithm derivative of a function on E(C). O

1.5. Weil pairing. Let E be an elliptic curve over a filed K of characteristic 0.
Let Gx = Gal(K/K). Then for any integer m > 1, E[m| ~ (Z/mZ)? and this
gives
pPEm Gk = GLo(Z/mZ).

The first statement follows from that F is defined over Q(gs,gs), which can be
identified with a subfield of C. This is an example of Lefschetz principle, which
proposes that an algebraic statement over algebraic closed filed of characteristic
zero can be checked by just looking at C.

The representations pg.., are very interesting. For p > 5 and F : y* = x(z —
a?)(x + b?), then pg ., has so nice property that

al? + v’ =P, (a,b,c) =1,
cannot have integral solution.
Theorem 1.15. (1) For any P € E[m], there is a unique f € K(E)* up to

K* such that div(f) = m([P] — [0)).
(2) For P,Q € E[m],
folz) fr(ze@)

em(P,Q) = To@o P fo@) € fm

18 constant.
(3) Moreover, (P, Q) — en (P, Q) gives a bilinear, alternating, non-degenerated
pairing on E[m] x E[m)].
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(4) If K =C, and ¢, : C/A — E(C), then

21y g Hmb

em(P,Q) =em ,

where a, b is an inverse image of P and @ in C.

Proof. Assume K = C and let ¢ : C/A — E(C). The uniqueness follows from
the fact that a regular function on F without poles and zeroes must be constant.
By Abel’s theorem,

fp(z) =0(z —a)"o(2)' ™o (2 — ma) ™"
is a rational function on E(C) with divisor m([P] — [O]). Then

_ o(z—a—mb)  o(z—1b) o(z — ma)

em (P, Q)

man(mb) — mbn(ma)

o(z—a) o(z—b—ma) o(z—mb)

)= exp(% (ma#mb)). O

= exp( -

2. COMPLEX ABELIAN INTEGRAL ON ALGEBRAIC CURVES

2.1. Algebraic curve over C. An curve X over C is called proper if X(C) is
compact; projective if it is defined by a homogeneous polynomial; smooth if locally
holomorphic to an open disk. Thus a smooth and proper algebraic curve X over C
gives a compact Riemann surface X (C), and vice versa (hard!). Let g be its genus.
Then topologically it’s a 4g-gon with edges identified.

Fix a point Py on X (C), the corresponding fundamental group is

g
’/Tl(X((C),Po) =< ai,bi,i == 1,...,g‘ Haibiai_lbi_l =1 >,
i=1

and the fist homology group is the abelianization of it.

by

ap
FIGURE 1. 4g-gon

The intersection pairing
H,(X(C),Z) x H(X(C),Z) — Z
(a,b) — a#b

is a bilinear alternating paring. There exist a canonical basis {a1,...,a4,b1, ..., b4}
of Hy1(X(C),Z) such that

Cbi#bj = 5”‘ = —bj#ai, ai#aj =0= bl#b]
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That is to say, under the basis {a1,...,aq,b1,...,by}, the matrix of intersection

numbers is
o I,
-1, O)°

Topologically, a; and b; are the sides of a 4g-gon. This also holds for compact
orientable topological manifold.
Theorem 2.1. (1) dimc HO(X(C), Q%) =g.

(2) There exists a (unique) basis (w1, ...,wy) of H(X(C), Q%) such that fai wj =

bij-
(3) The matriz B = (zij)1<ij<g = ([, wj) is symmetric and Im B is positive
definite.
Let A = Z9 ® BZ9 C C9 be the image of H; (X (C),Z) by

we [u=([ o /wg

and J(C) = C9/A be a complex torus. Fix a point Py € X(C), the map

(2.1.1) tp,(P) = /PwmodA

Py
fits in the following commuting diagram

LP,

71(X(C), Py) —= 71 (J(C), 0)

l -

H,(X(C),Z) ————=A

Theorem 2.2 (Riemann). (1) J has a unique structure of algebraic projective
variety over C of dimension g and J(C) = C9/A endows J(C) with a group
law, which gives a algebraic group structure of J.
(2) tp, gives an embedding of algebraic varieties.
(3) The induced morphism v : HO(J, Q') — HY(X, Q') is an isomorphism and
L}O dz; = w;.

Remark 2.3. (1) J is called the Jacobian of X. If X is defined over a number field
K, then so is J.
(2) If g <1, then ¢p, is an isomorphism. But for g > 2, X is very small in J.
(3) J is very useful to study X. The Mordell-Weil theorem says that J(K) is
a finitely generated abelian group. The map Lp, is an essential tool to prove the
finiteness of X (K) for g > 2.

Theorem 2.4 (Abel). (1) Let D = > n;(P;) be a divisor on X, then D =
div(f) for some f € C(X)* if and only if deg D = 0 and tr D = ®[n;|ep, P; =
0eJ.

(2) We have an exact sequence
0 — {div(f)} = Div’(X(C)) — J(C) — 0.

The proofs use Riemann #-function which replaces Weierstrass o-function. De-
fine
0(z) = Z exp(im'nBn + 2it'nz),
nez9I
it converges because Im B is positive definite. If u =a+ Bb € A, a,b € Z9,

0(z + u) = 0(z) exp(—in'bBb — 2ir'bz).

Hence the zeroes of 6 are periodic of period A, and we can talk about the zeroes of
fin J,or forp, in X.
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Theorem 2.5. (1) There is wo € CY9, unique up to A, such that if z € J is
generic with a lifting z € C9,
tp i Bg(0,7) — Y(C)
P+— 0(wyg —Z+ tp,(P))
with 1p(0) = P has divisor (Q1,2) + -+ + (Qg,2) where Q1,-,...,Qq - are
uniquely determined by
tpy(Q1,2) @ @ 1py(Qq,2) =2 € J.
(2) The map
X9/Sg — J
(Pr,...,Py) —tp(P1)+ -+ tp, (Py)
18 a birational isomorphism.
(3) The theta divisor © = {x € J: 0(wo — z) = 0} s
{tp(Q1,2), - stp)(Qg,2) + Qi € X}

2.2. Differential forms. Let Y be a smooth algebraic variety over C (we will take
Y = X or J), which is viewed as a complex analytic variety. By GAGA principal of
Serre, the meromorphic functions on Y (C) are one-to-one corresponding to rational
functions on Y.
Ifwe Qé(y), P € Y(C), then there is

tp: B(0,r) = Y(C)
with ¢(0) = P. Here B,(0,r) is the product of g closed balls with radius r of the
complex plane. If Y is of dimension g, we can write

L}Bw:fldzl ++fgdzg

for some meromorphic function f; on the open ball B,(0,17).
We say that w is closed if locally, outside of the poles, it is df. Then

g
Upw = Z 3f80 tp dz;.

.
i=1 v

By Poincaré’s lemma, this is equivalent to dw = 0, then

g
0=pdw= dei Adz; = Z <gi: - ng%) dz; A dz;.
i=1 1<J
Definition 2.6. We say w is of the
e first kind, if it is holomorphic and closed;
o second kind, if locally w = df for some meromorphic f (no residue);
o thrid kind, if locally w = % for some nonzero everywhere f (simple poles,

integral residue).
Then we have an exact sequence
0— H(Y,0") = DSK(Y) ® C @ DTK(Y) = (Qy)*=" = 0.
Denote Hiz = DSK(Y)/{df}, then we have a pairing (period)
Hig(Y) x Hy (Y(C),Z) — C

(w,u) H[Jw.

We have several theorems similar to those for elliptic curves.

Theorem 2.7. (1) vp, induces an isomorphism Hig (J) ~ Hlg (X).
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(2) dime Hiz (X) =2g and (w,u) — [, w is perfect. Thus
Hlg(X) = Hom(H; (X (C), Z),C).
(3) If u is generic, then the image of

00(z —u)/0z
", ( 0(z — u) < (/)
in Hig (J) doesn’t depend onw. Denote byn; = v M, thenwi, ... ,wg, N1, ..., 7
is a basis of Hig (X).
(4) (Riemann period relation). If u,v € H1(X(C),Z),

Z/m/wl /Uz/wz—Qmu#v

Theorem 2.8 (Theorem of square). For any w € DSK(J),
m*w — priw — praw = df
for some f € C(J x J).
For any w € DTK(J),
m*w — priw — praw = df/f
for some f € C(J x J)*

Theorem 2.9. There is an algebraic group J with the following properties:

(1)
DTK(X) DTK(J)

df/f - df/f

where A is the lattice consisting of

S [ [ [

for all w € H{(X(C),Z).

(2) there is an exact sequence

0—H(X, Q) > J - J—0

J(C) = =C¥/A

with C-points

DTK(X) DivY(X)

{dr/ry  Adiv()}

(3) ifne D§K(J), there is a unique o, € HO(J,QY), invariant under transla-
tion by J, such that

™ —a, =df, feC(J).

Hg (X) is isomorphic to the invariant forms on J.

0— HY(X,0Y — - 0;

3. p-ADIC FIELDS

3.1. p-adic number. Let K be a field.

Definition 3.1. A normon K is amap |-|: K — R, satisfying
o |z2|=0 < z=0;
o [zy| = l2[lyl;
o |z +yl <]+l

Say | - | is ultrametric or non-archimedean if |z + y| < sup(|z|, |y|).

A wvaluation is a map v : K — RU {400} satisfying
o v(z) =400 << =0
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o v(zy) = v(@) +v(y);
e v(z+y) = inf(v(z),v(y)).
Say v is discrete if v(K*) is discrete, i.e., v(K*) = oZ for some a > 0; normalized
if v(K*) =Z.
7 is a pseudo-uniformizer If v(w) > 0. If v is discrete with v(K*) = aZ, 7 is a
uniformizer if v(7) = a.
If v is a valuation and 0 < a < 1, then z + |z| = a*®) is a norm. Conversely, if
| - | is ultrametric, for any A > 0, v(x) = —Alog|z| is a valuation.
A norm or valuation defines a topology, in fact a metric space, with an open

basis
B(a,07) ={x: |z —a| < d}.

Theorem 3.2 (Ostrowski). (1) OnQ, up to equivalence, the nontrivial norms
are | . |OO — | . |]R and | . |p :pivp(')'
(2) On C(T), up to equivalence, the nontrivial valuations are v,, a € P*(C).

We have the product formula
1_[\:s|v:17 reQ*;
[va(£) =0, fec@).

Remark 3.3. (1) If | -| is a ultrametric, | K| = |K| where K is the completion of K
under the topology induced by |- |.

(2) If (K, | -|) is complete, > a, converges if and only if a,, tends to 0.

(3) Assume K is complete. Let

Og ={x e K:|z|<1}
be the ring of integers of K, then

Ox =~ lim O /{la] < a"}
for any 0 < a < 1.

Let @, be the completion of Q for | - |, or v, and
Zp={z € Qp|l|zl, <1}
Proposition 3.4. For anyn > 1, Z/p"Z ~Z,/p"Z,.
Thus Z, = ]gnZ/p"Z.
Let (K,v) be a complete field. Then all valuations on K are equivalent and K
is complete for any of them.
For s > 1,let P, = K® Kz ® ---® Ka*~ 1. Let g,h € Klx] with degg <
n,degh < k. Define
99$h P, ® P, — Ptk
(u,v) — ug + vh.
Let R = R(g,h) be the determinant of §, ;. Then R = 0 if and only if
degg<n-—1,degh<k—1 or (g,h)#1.
Denote 4
’UQ(Z a;z*) = inf v(a;).
Theorem 3.5 (Hensel’s lemma). For ¢ > 0, f,g,h € Ok|z], suppose
e degg < m,degh < k,deg(f —gh) <n+k—1;
o v(f —gh) = c+2v(R(g, h)).

Then there are unique §,E with
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o deg(g —§),<n—1,deg(h—h) <k —1;

* vo(g9 —g),vo(h —ho) > ¢+ v(R(g,h));

o f=gh.
Corollary 3.6. If f € K[x] is monic irreducible and f(0) € O, then f € Ok|z].
Proof. Write f = 2% + ag_12% 1 4+ -+ 4 ag. Assume i is the biggest one such that

v(a;) = info(a;) <O.
J

Then
a; ' f =bgxt 4+t by, b € O,
Let g=a'+---4+bg and h = 1 + bgz?*. Then R(g,h) = 1 modmg, where mg is
the maximal ideal of Ok, and
vo(f —gh) >0, deg(f—gh)<d-1.
Conclude the result by Theorem 3.5. (]

Proof of Theorem 3.5. Write g = g + ’U,?L = h + u, then we want
f—gh—uv=gu+ fu.
That is to say, (u,v) is a fixed point of
(w,0) = 0,5 (f — gh — uv) = (u,v).
It suffices to prove that ¢ is contracing on
B ={(u,v) € P, ® P, : vg(u,v) > d:=c+v(R)}.
In fact,
vo(f — gh —uwv) = inf(vo(f — gh), vo(uv))
> inf(c + 26,2¢ + 20) = ¢+ 20.
Since 9;2 has entries in R~1Ox, v(p(u,v)) > c+25 —3§ = ¢+ 6. Hence o(B) C B.
For any (u,v), (v/,v") € B,

/

vo(p(u,v) — @(u',0"))
=00, (ulv = ') +v'(u — o))
=inf(vo(u) + vo(v — v") — 8, v0(v") + vo(u — u') = §)
>c+vo(u —u',v—1v),

thus ¢ is contracting. (]

Example 3.7. (1) If f € Oklz], o € O with v(f(«)) > 2v(f’(«)), then there is
a with v(a — a) > v(f'(«)) and f(a) =0.

(2) If f € Oklx] is monic and « is a simple root of f in the residue field kg,
then there is a unique lifting & € Ok with f(a) = 0.

Definition 3.8. Let V be a vector space over K. A waluation on V is a map
v:V = RU{oco} satisfying

o v(z) =400 < z=0;

e v(A\z) =v(A) + v(z);

o v(z+y) > inf(v(z),v(y)).

Theorem 3.9. Suppose (K,v) is complete and V is finite dimensional over K.
Then all valuations on V' are equivalent and V is complete for any one of them.
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Proof. Fix a basis {e;} of V. Define

UO(Z xie;) = inf v(x;).
Then
U(Z wie;) 2 nf(v(z;) +v(e;)) = vo(x) +infiv(e:).

Suppose v(>_ :vgk)ei) tends to infinity but infiv(:vl(-k)) tends to infinity. There is
c¢>0and1 < ¢ < nsuch that v(mgk)) < cfor any k, since v((xgk))_l > xz(-k)ei) tends
to infinity, e; lies in the closure of the space spanned by eq,...,€;-1,€i41,.... O

Theorem 3.10. Suppose (K,v) is complete and L is a finite field extension of K,
then there is a unique extension of v as a field valuation on L:

v(z) = [L:ilK]U(NL/K(Q?))-

Let Gx = Gal(K/K) be the absolute Galois group.

Corollary 3.11. (1) v extends uniquely to K.
(2) Gk acts on K wvia isometrics v(ox) = v(z).
(3) Gk acts on K continuously. Thus G = Aut(K/K).

Theorem 3.12. (1) C= K is algebraic closed.
(2) The residue field ke = kg = ki

~

3.2. No 2mi in C,. Let C, = Q,, be the completion of the algebraic closure of
Qp with v(C)) = vp(@; ) = Q. This field is non-canonically isomorphic to C
under assuming the Axiom of Choice. We have an action of the Galois group
Go, = Gal(Q,/Qp) = Auteons(Cp) on Cp.

Theorem 3.13 (Ax-Sen-Tate). For any closed subgroup H of Gg,, (Cf is the

completion of @f

Let F' be a field of characteristic zero with absolute Galois group G = Gal(F/F).
Let x : Gr — Z, be the cyclotomic character, (,» € F' be a primitive p"-th root
of unity. Then for any 0 € Gp, o({m) = gp,:?(") with x.m (o) € (Z/p™Z)*.

We have X, (07) = Xm(0)xm (7) and xm(0) = Xm_1(c) in (Z/p™~Z)*. Thus

X(0) = (Xm(0))men € Um(Z/p™Z)* = Zj,

and x(o7) = x(0)x(7), 0(¢) = (X7 for any ¢ € ppee.

Now 2mi = p" log e and o(2mi) = p"log C;frgg) = x(0)2mi. Tate proved that if
o(z) = x(o)x for any o € Gg,, then z = 0.

3.3. p-adic logarithm.
Lemma 3.14. If v,(x) > 0, then

log(1+z) = Z %x"

converges in C, and

log(1+z+y+xy) =log(l+z)+log(l+y), vp(z),vy(y) >0.

Proof. Since vp(ﬂx”) = nup(x) — vp(n) > nup(x)

n

tens to infinity, the convergent is proved. Since
log(1+ X 4+Y 4+ XY) =log(l+ X) +log(l+Y)

holds as power series. Take X = x and Y = y, then both sides are convergent. [

_ logn
log p

tends to infinity as n
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Proposition 3.15. If £ € C,, then there exists a unique log, : C;; — C,, satisfying
(1) log,(zy) = log, () +log,(y);
(2) logc(p) = £;
(3) loge(2) = X,ny S —(a = )" if vy (@ = 1) > 0,

Remark 3.16. Choosing £ amounts to choosing a branch of p-adic logarithm. Take
L =0, we get Iwasawa logarithm log. Then log, z = logz + Lv,(x).

For any o € Gg,, logo(z) = o(log ) by unicity.

Also, we define

n

x
expx = E —
n:
n>0
1

which converges for vy (z) > 5=
Proof. Choose p” for 7 € Q so that p"** = p"p* (we only need to choose p'/™).
Then for x € C), v = pr®)y with y € (’)CXP. Let ¢ be its residue in ?; = Oc, /mc, .

Then there exists an integer N such that " = 1 in F:, ie., vp(yN —1) > 0. Define
1
log, x = Lvp(z) + N logy™. 0.

3.4. Cyclotomic extension. For n > 1, let F,, = Q,((pn).

Proposition 3.17. e, = [F, : Q,] = (p — V)p"~ !, m, = (pn — 1 is a uniformizer

of F,, with vy(m,) = ei and 1,(pn, ..., ;Zi_l is a basis of Op, over Zy.

Proof. The polynomial

o= (1+X)P" —1
S+ Xx)pt -1

kills m,. Since ¢ is Eisenstein, ¢ is irreducible and F,, = Q,[X]/¢. Thus e, =

(p—Dp" ! and Np, /g, Tn = p, this implies v(m,) = = vp(Np, g, 7) = . And

= Xxe-Dr" 4y

x 1 x cs s . . .
vp(Fy) C 2-vp(Qy), this implies that m, is a uniformizer.
Since 1,7y, ..., 71 is a basis of F,, over Q,, for any x € F,,,
el
T=To+ X1y + -+ Te, —17

for z; € Q,. Notice that all nonzero terms have distinct valuation, thus v,(x) =
inf v, (x;7¢) and v,(x) > 0 implies that v,(z;) > 0 for all i. Thus 1,7,,..., 7~}
forms a basis of O, over Z,. O
Corollary 3.18. Let Fyo = UF,, then x : Gal(Fso /Qp) — L.

Define Tate’s normalized trace map R : Foo — Q, as
1
(£ Q)
Proposition 3.19. R extends by continuity to ﬁoo — Qp with
R(o(z)) =R(z) ==z

forz € Qp,0 € Gal(Fs /Qy).
Proof. We have R(1) =1,

MO—{WH’ re=t

0, if (P #£ 1.

Thus R(OF,) C Z, and vy(R(z)) > vp(x) — 1. This implies that R is uniformly
continuous and it can be extended to Fi. [l

R(z) = Trg, 0, %, © € Fh.
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Theorem 3.20. For k € Z and [K : Q,] < oo,

K, ifk=0;
Cy()9 = {2 : o(2) = x(0)"2,V0 € G} = {o, if ki #0.
Proof. If k = 0, this follows Ax-Sen-Tate. If k # 0, assume 0 # x € C,(k)“*,

y =logz, o(y) = y + klog x(c) for any . By Ax-Sen-Tate, y € Fs, = (@Eerx)/\.

Then R(o(y)) = R(y)+klog x(o). But R(y) € Qp, 0(R(y)) = R(y), ridiculous! O

4. FONTAINE’S RINGS AND p-ADIC GALOIS REPRESENTATIONS
4.1. p-rings.
Definition 4.1. Let A be aring and I be an ideal. Say A is separated and complete
for I-adic topology if A " lgl(A/I”) In this case, the I-adic topology on A and
discrete topology on A/I™ turns this into an isomorphism of I-adic topology rings.

In this case, Y @, converges iff z,, — 0, i.e., for any N, there exists ng such that
x, € IN for n > ng.

Example 4.2. If (K, v) is complete, v(m) > 0, then Ok is separated and complete
for m-adic topology.

Lemma 4.3. Assume A is separated and complete for w-adic topology, ™ is not a
zero divisor, S a system of representatives of A/ inside A. Then any x € A can
be written as x =Y.~ s;m" with s; € S uniquely.

Proof. There is a unique s(z) € S such that @ — s(z) € 7A. Let o = x,2, =
%(mn_l — $(xp—1), then

n
x = Z s(z)m + "M, .
i=0
Take s; = s(x;). O
Definition 4.4. Let R be a ring of characteristic p. R is called perfect if z — P
is an isomorphism. I is perfect if R/I is perfect, i.e., x — 2P is bijective on I.

A is called a p-ring with residue ring R if there is 7 such that A is separated
and complete for m-adic topology and A/m = R, in particular, p € 7A. A is strict
if pA=mA. Ais perfect if strict and R is perfect.

Example 4.5. (1) Z, is perfect.

(2) Let J be a set and Wy = Z,[X?

7 ,J € J], then

Wy = yﬂlWJ/anJ
is a perfect ring with residue ring W = IB'p[Xfiw,j e J].

If A is perfect, then A/p is perfect. If R is perfect, there is a unique perfect A
with A/p = R.

4.2. Teichmiiller representatives. Let A be a p-ring and R = A/7.
Lemma 4.6. If x —y € ©A, then " — y?" € m"T1 A,
Proof. By induction. O

For any ring S, Denote
R(S) = {z = (™)pey : 2™ € 8, (TP = (M},
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Proposition 4.7. We have R(A) = R(R). If x = (z(™) € R(R), let 2™ € A be
a lifting of (), then (i("Jrk))pk tends to ™) € A and & = (2) € R(A).

Corollary 4.8. R(A) is a ring with ring structure as R(R), which is a perfect ring
of characteristic p.

This is an old construction of Fontaine. Scholze calls it the tilt A” of A.

Example 4.9. Z; = R(F,) = F,. More generally, A> = A/p if A is perfect,
because if R is perfect, R(R) = R.

Remark 4.10. (1) If z € R, then x = (z,2Y/7,...) € R(R) gives # € R(A). Then
[z] = (9 is called the Teichmiiller lifting of x, it’s the unique lift to A of x with
p"-th root, for any n. We have

— lim (£1/P")P"
2] = lim, (@2/7)"
and [zy] = [2][y]. ‘
(2) If A is strict, any = € A can be written as - ,[z;|p’ for z; € R.

A question is: can we write + and X in A using this decomposition? The answer
is yes, and the tool is Witt vector.

Theorem 4.11. (1) Assume R is a perfect ring of characteristic p. There is a
unique strict p-ring W (R) unique up to unique isomorphism such that W(R)/p = R

)()0y),

(2) If A is a p-ring, A/t =R', 0 : R— R, 0 : R — A with 0(xy) = 0(x)
then there is a unique ring morphism 0 : W (R) — A lifting 0 such that 0([z]) =

Remark 4.12. (1) The unicity in (2) is obvious, for z = Y [z;]p' € W(R), 0(z) =
ST pi0(x;). W(R) is unique since there is a unique 6 : W(R) — W(R) identity
modulo p for §(z) = z and A(x) = [z]. There is a unique lifting of = with p"-th
roots for any n, namely [z], thus 6 = id.

(2) If R’ is perfect, Hom(W (R), W(R')) = Hom(R, R') for 0(z) = [0(z)].

The Frobenius ¢ : W(R) — W(R) is the lifting of x — 2P, i.e.,

oY lailp) = Sl

(3) If A is perfect, then W (A/p) = A. In particular, W(F,) = Z, and W(W ;) =

o~

W;.

T ™

Now we prove that W satisfies (2). The map f: W; — A,f(xé’_n) = é(xi_")
by continuity extends f to f : W,] — A (provides A is p-adically complete). We
will show f([z]) = 6(x) for any € W ;. Since f modulo 7 is 0, f([z]) — 0(z) € A,
thus o o

f(la" 7)) - 0@ ) erA
and then f([z]) — 0(z) € 7"+ A. In general, R can be written as W /I for some
perfect ideal I. Let

W) ={> pilwi 2 € I} C Wy,
Lemma 4.13. W(I) is an ideal of W; and we take W(R) = W, /W (I).
Let U = NUN = {1,2} x N and £(X) = Y [X]p', 2(Y) = S[Yi]p' € Wy, then
2(X)+2(Y) = [s:i(X, V)]’
(XO)B(Y) =Y (X, V)P

for s;,p; € Wy
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Proposition 4.14. Let A be a perfect p-ring with A/p = R. For x = (z;),z; € R,
let X(z) = Y [z]p' € A. Then

S(x) + S(y) =Y _[si(z,y)lp’
= S itz )l

Proof. Let 6 : Wy — R, 5( ) = 2,0(Y;) = yi and 6 : Wy — A,0(z) = [0(z)],
then there is a unique 6 : Wy — A with 0([x]) = [0(x)]. Now

B(z) + X(y )29( (z)) +0(X(y )) 9( (z) +%(y))
=00 [si(z,y)pi) =Y _p'0(si(z, )] =Y _p'lsi(x

Similar for product. O

Proof of Lemma 4.13. ¥(0) = 0 implies that S; has no constant term and W ([) is
stable under addition. ¥(x) = ¥(y) = 0 if = 0 or y = 0 implies p; has no term of

degree 0 in X or Y. This implies that W ([I) is stable by multiplication by W, O

4.3. The ring E*. R(A) is a perfect ring of characteristic p. Define Et =
R(Oc,) = R(Oc,/p) (i.e., Fontaine’s R or Scholze’s OC?J)' The Galois group G,

acts via the action on every component.
If o = (") € BT, let 2 = 2(9), then (2y)* = 2%y, Let vg(x) = v,(z¥).

Theorem 4.15. (1) Etisa perfect ring of characteristic p, vg is a valuation
on E* for which it is complete.

(2) Gq, acts continuously, compatible with ring structure, commutes with x

xP.

(3) E :=FrE+ = E*[ | for any w with vg(w) > 0 is algebraically closed.
Proof. (1) One can check that vg is a valuation directly. If vg(z — y) > p™, then
vg(zt/P" —yt/P") > 1 and v, (2™ — y(™) > 1, ie., 2™ = y(™) in O, /p. Thus
2 =y in Oc, /p for i <m. Since the topology of E* is induced by the product
topology of discrete topology on Oc, /p, Et is complete for vg.

(2) Gg, respects the ring structure obvious. Since vg(o(z)) = vy(o(z?)) =
vp(2%) = vg(z), Gg, acts by isometries.

Let M > 0, choose p™* > M, y € O@p with v,(y — (™) > 1. There is a finite
Galois extension K/Q, with y € K. For 0 € Gg, and 7 € Gk,

or(z™) — o(z) = o7 (2™ — y) — a(z™ —y)

has valuation > 1, thus vg(o7(z) — o(z)) > p™ > M, i.e., 0 — o(x) is continuous.

(3) It’s enough to prove that for any unitary P in E* [X] has a root in ET. Let
pP= ka with Q" # 0. We may assume (P, P’) = 1, then there exist U,V € E+[X],
UP + VP =w for some w € E* with vg(w) > 0.

Write P(X) = X% +aq_1 X1+ +a with a; = (/™). Choose pV > 2v0g(w).
Choose (a:(")) € E* such that P@(z(M) = 0 where PO (X) = X4 4 aSle‘i_l +

-+ ao € Oc, [z]. Then P(z)™) =0 in Oc, /p, thus

ve(P(x)) > p" > 2up(w) > 2vg(P'(2)).

By Hensel’s lemma, P has a root y with vg(y —z) > vg(P(z)) —vg(P'(x)). O

Fix e = (1,eM,...) € E+ with e® # 1. Then £ is a primitive p"-th root of
unity and

vp(e—1) = ngrfoop vp(e (”)71):ﬁ > 0.
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Proposition 4.16. If 0 € Gg,, o(c) = eX(?) =} (X(Zf’))(s - 1)
If z € Oc,, note by 2" any element of E* with (2”)f = 2. Note that 2 is only
unique up to e%». B B
Since vg(e — 1) > 0, Eg, = Fy((¢ — 1)) — E implies £ = E(S@epp — E.

Theorem 4.17 (Fontaine-Wintenberger). (1) E is the completion of E for
vp. If H =kerx, then H acts trivially on Eg, and H — Gal(E/Eqg,).
(2) H~Gal(E/Eqg,).

Remark 4.18. We get a déversage
1— G]F,;((T)) — GQP i) Z; — 1.

This is very useful to study Gg, and its representations.

4.4. The ring AT = W(E"). Any 2 € A" can be written uniquely as 3 [z,]p’ for
x; € ET. It commutes with G, -action and p-action.

Theorem 4.19. (1) 6: At — Oc,, 0> [z:lp") = S piat is a surjective ring
morphism commuting with Gg, -actions.
(2) kerd is principal and x € ker 0 is a generator if and only if ve(xo) = 1.

Proof. (1) 6 : Bt — Oc,/p and 0:Et — Ocp,é(x) = 2% give the unique @ with
0([z]) = .

(2) Define Z = g if 2 = Y[ai]p’. If O(z) = 0, then 2§ = —Zplpixg, thus
Up(xg) > 1 and vg(zxg) > 1. If (z) = O(y) = 0 and vp(z) = 1, ve(y) > 1,
then there is ag € ET such that § = Zag, y = x[ag] + py1 with 6(y1) = 0. Thus
y = 2(X[ailp’). 0

For example, [p’] — p and

gl -1
o [51/?3} —1
are two different generators of ker 6.

The natural topology on At s (p, [p°]) = (p,kerf)-adic topology, and on E*
is vg or p’-adic topology. Then At — E* is continuous for the natural topology
and the natural topology turns the bijection (ET)N — A into a homeomorphism.
The basis for open sets are z + p" AT + wk~1 A% for n,k € N. The action of Go, is
continuous under this topology (but not for the p-adic topology).

We have

+oo
o) = [o(e)] = 4] = (4 = - () el - -
k=0
4.5. The ring BJ; and the field Bjr. We extend 6 to Z"‘[%] — C,, it’s still a

ring morphism with kernel generated by w. Let B(TR be the completion of Z*[%]
for the (ker 6)-adic topology, i.e.,

~ 1
B = lim A )/ (ker6)".

This is a complete discrete valued ring with residue field C,. The valuation vy is
normalized by vy (w) = 1. Since 6 commutes with the action of G, , ker @ is stable
by Gg, and Gg, acts on Bjp.

Then natural topology on Bg‘R is defined as follows: the basis of open sets are
T+ phAt + wkt1 BT, . This is the projective limit topology, each Bjy/(ker 6)*
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endowed with the = + p”g‘*‘ as a basis of open sets. B:{R is a Fréchet space as a
projective limit of Banach spaces. The Gg,-action is continuous.

Lemma 4.20. If z € By, v,(0(2)) > 0, then
o)
(1!
log(1 = —"
og(1+ z) nz::l p—

converges in Bg‘R and

log(1+ o(x)) = o(log(1l + x)).
Proof. Choose a € N with av,(6(x)) > 1, then 2% € pA* —&-NwBérR. Write z% =
pu+wvand n =ag+r with0 <r <a—1. Assume v € p~ V- AT 4+ w1 B, then

2" = 2" (2%)7 = 2" (pu + wv)? € pIFNe AT 4 W B,

Since ¢ is nearly n/a, ™ /n tends to zero modulo ker 6. O
Now .
(o)
(_1)7l_1 n
t=logl =Y (- 1)

Il
-

n

converges in By since v,(0([e] — 1)) > 0. And
a(t) = logo([e]) = log[e]'?) = x(0) logle] = x(o)t,
that is to say, ¢ is the p-adic analogy of 2mi.
Proposition 4.21. t is a generator of ker 8, in particular, t # 0.
Proof. Since [¢] — 1 = w(['/?] — 1),
t t

0(=) =

w €] —1

0(["/7] — 1) £ 0. O

Let Bar = Bjy[+] be the fraction field of BJ;. We extend the action of Gg, by

U(%) = X(i)t'

Theorem 4.22. (1) @p s a subfield of B(;FR, More precisely, 0 induces an isomor-
phism for the separable closure of Q, inside B;fR to @p

(2) If [K : Q) < 00, (Bar)“* = K.
Proof. (1) Let P € Q,[X] be the minimal polynomial of z € Q, with (P, P') = 1.
Let & € Bl satisfy 6(2) = z, then vy (P(2)) > 1 and vy (P'(2)) = 0. By Hensel’s
lemma, P has a unique root in & + wB;fR.

(2) If z € BSGE — {0}, write = = t*y with y € Bl and 6(y) # 0. Then

a(0(y)) = x(0) " 0(y).
by Tate’s lemma, k£ = 0 and 6(y) € K, and then z — 0(x) is fixed by Gk with
vy > 0. Finally z = 6(z) € K. O

Remark 4.23. (1) Can the inclusion @, < Bj extend to C, continuously? No,
because @p is dense in BCTR.
(2) By Ax-Sen-Tate, ¢ is not in the closure of Q, (=) in Blg.

Define a sequence of sub-rings of @p,

00 =0y, OF) =ker(0® — 0® QL) ).

They have a basis of open subsets z + p"O*¥) and
1
B, = lim(1im(O® /pro®)[2)).
dr %(LIT( / )[p])
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4.6. p-adic Galois representation. Let K be a finite extension of Q, and Gx =
Gal(@p /K). A Qp-representation of G is a finite dimensional Q,-vector space V'
endowed with a continuous linear action of Gg.

IfdimV = dwith basis eq, ..., eq, let U, = (a; ;) be the matrix of o, then o — U,
is a continuous group homomorphism Gx — GL4(Qp), where 1 + p"M4(Z,,) is a
basis of open subgroups of GL4(Q,).

Example 4.24. (1) k € Z, V = Q, (k) = Que(k), where o(e(k)) = x(o)*e(k).
(2) Let E/K be an elliptic curve, then Gk acts on E(K)[p"] ~ (Z/p"Z)? con-

tinuously. Let
T,(E) = @ E(ovK)[p"]
n

be the Tate module, then T,,(E) is a Z,-module of rank 2 with continuous G-
action. In fact, T,(F) = Z, @ H1(E(C),Z). Let V,(E) = Q, ® T,(F), this is a
Qp-representation of dimension 2.

(3) Let X/K be a curve of genus g with Jacobian J and V,(J) = T,,(J) ® Q,,
this is a Q,-representation of dimension 2g.

(4) H, (X7, Q(k)) is a Qp-representation of Gk if X is an algebraic variety
defined over K.

(5) Let V be a Q,-representation, then V* = Hom(V, Q,) is also a Q,-representation
under o.4(v) = {(0c~1.v) and the matrix is ‘U, ! under the dual basis.

To study Q,-representation of Gk, there is a very fruitful strategy of Fontaine.

e define rings B with an action of G with extra structures stable by G,
e.g., B = Byr and Fil'Bqr = t'Bj,i € Z.

e Dp(V) = (B® V)9 and Dj = Homg, (V,B) = (B ® V*)“x are BYx-
modules (BY¥ is a ring) with extra structures.

The art is to construct interesting B’s, Fontaine is a master: B(;FR, Bar, Beris, Bt -
Example 4.25. Dyr (V) = (Bgr ® V)% is a K-vector space with filtrations.

Ifey,...,eqis abasis of BV over B, U, is the matrix of o, then U,, = U,o(U,).
Say that V is B-admissible if there is a basis in which U, = 1 for all . If you
start from any U,, that’s equivalent to say, there exists M € GLg4(B) such that
Uso(M)= M.

Proposition 4.26. If B is a field, BY% is a field and dimge, Dp(V) < dimV
with equality iff V' is B-admissible.

Proof. Let x1,...,2,. € Dg(V) C B® V dependent over B. Assume A\jzq + -+ +
M-z = 0, take a minimal one and A\; = 1. Then

z1+o(M)za+ -+ o(A)x, =0
and
(c(M2) = A)zg + -+ (o(Ar) — M) = 0.
By minimality, o()\;) = A\; and \; € BY%. Thus
dimge, Dp(V) < dimp(B-space generated by Dp(V)) < dim V.

The equality holds iff there is a basis of B ® V with elements in Dg(V), i.e., V is
B-admissible. O

Proposition 4.27. V is B-admissible iff V* is also B-admissible.
Proof. That’s because if U,0(M) = M, then U to(*M~1) =M~ O

Proposition 4.28. V is @p—admissible iff Gk acts through a finite quotient.
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Proof. =: U, = Mo(M)~! for some M € GL4(L) with L/Q, finite Galois.
<: Pick such L with H = Gal(L/Qy), then forany o € L,let M =3 __, 7(a)U-,
then

Uso(M) = > Usor(a)V; = > or(a)Uqr = M.

TEH TEH
We want det M # 0. det(>. X, U,;) = 3. X?detU, + ---, it’s nonzero because
Arthur’s independence of characters. O

Theorem 4.29. (1) Q,(k) is C,-admissible iff k = 0 (Tate’s theorem).
(2) V is Cp-admissible iff Ix acts through a finite quotient where

0— Ix — Gg — Gal(F,/kk) — 1.

Remark 4.30. (1) Q,(k) is Bar-admissible (=de Rham), thanks to ¢t=*.
(2) Fontaine conjectures that H, (X z,Q,(k)) are de Rham.
(3) We are going to prove V,,(J) is de Rham if J is the Jacobian of curve X/K.

5. p-ADIC ABELIAN INTEGRAL

5.1. Lubin-Tate formal groups. Assume h = [K : Q)] < 00, kx =Fy, ¢=p/, 7
is a uniformizer of K. Since 2¢ =z in F,, 2¢ — 2 € 7Ok for € Og. Then O D
W(kk) and O = W (kg)[z]/(¢) for an Eisenstein polynomial ¢. Ky = W(kK)[%]
is the maximal unramified subfield of K, and K/Kj is totally ramified of degree
e = deg ¢ where h = ef. Let P be a polynomial with

P =7X + X%mod 7 X?Ok [[X]].

Lemma 5.1. Ifay,...,aq € O and { = a1 X1+ -+ aqXy, then there is a unique
Fy e 0+ 1% where [ = (X1,...,Xq) CA=0k|[[X1,...,X4]], such that

P(Fy(X1,...,Xaq)) = Fo(P(X1),..., P(Xa)).

Proof. We will construct F,, € A such that Fy, 1 —F,, € I""™! and P(F,)—F,(P) €
71"t then we can take Fy = ¢ and Fy = lim F,,. We have
d
Pl)=ml+ 01 =7nl+ Zang mod 71,

i=1
d
{(P)=ml+ Z a; X1,
i=1
P6) —¢(P) = Z(ag —a;) X! = 0mod 7I?.
Assume F, 1 = F,, + R,, where R,, is homogeneous of degree n 4 1, then

P(Fpy1) = P(F,) + 7R, + RY mod ™!
Foi1(P) = Fy(P) + 7R, + R, (X?) mod 71" !

Take R, = LE-FEN"™ « 0 [1X, ..., X,]], then

P S —
P(Fpy1) — Fuy1(P) = Ry (X)? — R,y (X?) = Omod wI™ 1, O
Denote
XBY =Fxyy € OK[[X, Y]],
then
P(X)®P(Y)=P(X®Y)
and

X®Y =X + Y modI?
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For a € Ok, [a]. X = F,x € Ok[[X]], then
P([a].X) = [a].P(X)
and
a[X] = aX mod I*.
In particular, [7].X = P by unicity.
Theorem 5.2. (1) @ is a commutative formal group law T, i.e.,
XoY=YoX XoY)oZ=XoYaZ), (-1]X)oX=0.
(2) a v [a]l.X is a ring homomorphism Oxg — End T, i.e.,
). (X&Y) = ([l X)8([a)Y), ([l X)&(B.X) = [o+8.X,  [a].(1)-X) = [ab]. X.
Proof. Since
(XoY)eZ=X+Y+Z=X& (Y ® Z)mod I?,
P(XeY)eZ)=PX)aPY)aP(Z)=PXa(Y&Z),
we have (X @Y)® Z =X @ (Y @ Z) by unicity. Similar for other results. O
(T, @) is a Lubin-Tate formal group attached to (K, ).

Proposition 5.3. (1) If Py, P; as above, then there is a unique G € X +m2O[[X]]
such that G(P1 (X)) = P(G(X)).

(2)GIX@®1Y)=G(X) B2 G(Y),G([a]1.X) = [a]2.G(X), i.e., G is an isomor-
phism (L1, ®1) — (L2, ®2).
Proof. By unicity. O
Example 5.4. K =Q,, P =(1+ X)? —1, then

XpY=(1+X)1+Y)-1, [0 X=01+X)"-1,

i.e., the multiplicative formal group @m

Remark 5.5. A formal group law over O turns mc, into a group.

Theorem 5.6. Let (', ®) be the Lubin-Tate formal group attached to (K, ), define
the Tate module

Tr(T') = {(0,u1,u2,...) : up € mc,, [T]Upi1 = Un}.

(1) Tr(T') is an Ok -module of rank 1.

(2) If (0,uq,...) is a generator (i.e., uy # 0), then K, = K(u,) is a total-
ly ramified abelian extension of K with Galois group (O /m™)*, where v;(u,) =
@ ().

(3) Let Koo = UK, then Gal(Ko/K) = Of. Let x1 : Gx — Gal(Kw/K) —
O be the Lubin-Tate character, then o(u,) = [x1(0)].up.

Remark 5.7. (1) For (Qp,p), I’ = Gy, this becomes the cyclotomic theory.
(2) By local class field theory,

1= 0f — G% — Gal(F,/F,) — 1,

thus Kb = Uw,p)=1 Koo (). Lubin-Tate makes LCF completely explained. If
[K : Q] < oo, we have a description of G2 but not of K" (Hilbert’s 12th problem).

(3) Tp(T') = T (1), p = ma,a € OF. If (u,) € Tx(I'), then (u, = [a™"].uen) €
T,(I)
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Proof. For a € Ok, (u,) € Tr(T), ([a].un) € Tr(T") makes T(T") a Ox-module. We
can assume [1].X = 7X 4+ X? Then T,(T") has no n-torsion. u € [r].T,(T") iff
uy = 0, thus u — w7 injects

T, (D) /7T (T) = I'[x] = {x : 7z + 2? = 0}.

Thus T (T") has rank < 1 with equality if it is not 0.

If it is not 0, w is a generator iff u; # 0, u; is a solution of u‘f_l + 7 =0 and
Up+1 is a solution of u‘fH_l + TUpy1 = Up, where X9 + 71X — u,, is Eisenstein. By
induction, we get K, /K is totally ramified and =, is a uniformizer.

T, (D) /m" T, (T) =~ T[r"] ~ Ok /7".
Since u,, € T[x"] — T[x" ], for 0 € Gk, o([r] — x) = [n].0(x), o(u,) € T[x"] —
[[x"*1], thus there is x1,.(0) € (O /m")* such that o(u,) = [xL.n(0)]-uy. Hence
Gal(K,/K) — (O /7™)* and x = Hm xp, 2 Gal(Koo/K) = OF. O

xr : Gk — OF is a 1-dimensional representation of Gx over K, then it is a h-
dimensional representation of Gk over Q,. Going to prove that this representation
if de Rham, denote V(') = K ®0, Tx(T'), Homg, (Vx ('), Bjy) is of dimensional
h. We are going to prove that using “periods” of Lubin-Tate formal groups.

Define the logarithm

f(XaY) - f(X)|
)% Y =0,

9f(X) =

then if t f(X) := f(X @ a), t5 08 = dot’. We have df(X) = u(X)IL(X) where
w(X) = (X8X=X), € 14+ XOg[[X]]. Write

=l4+a X +aX?+--,

w(X)
let )
dX X
((X) ¢ Og[[X]] but it converges on m¢,. We have /(X ©Y) = £(X) +£(Y). £ is
the logarithm of (I', ®) and

XY =01X) +4Y)).
Example 5.8. For I' = G,,, u(X) = 1 + X and /(X) = log(1 + X).
We have (([a].X) = al(X) if a € Ok.

Theorem 5.9 (Cartier-Harda). ((X) = >_, -, )%ﬂ is the logarithm of a Lubin-
Tate attached to (K, 7).

Let P=X947X,Qo=X""'4+7, Qui1 =QnoP.
Proposition 5.10. ¢(X) = X ][], 5, %r

Proof. Qn =7+ a1 X +---, then
Qn+1:7T+an71(Xq+7rX)+... .

vp(an 4) tends to zero. Thus 771Q,, — 1 tends to zero, and the product converges.
Let F = X [[ %, then Fo P =7F and {o P = {, thus

(F — 0)(P) = w(F — £)
and F — ¢ =ayX?%+---, and we have F = {. O

We have that the zeroes of ¢ are exactly I'[1*°].
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5.2. Periods of Lubin-Tate groups. Assume K/Q, is Galois, g € Gal(K/Q,).
There is a unique 0 < i < f—1 such that g(z) = 2?" on kg. Then £,(X) = g(£(XP"))
if
(X)=X+aX?+--,
lg(X) = X7 + g(a) X' + - |
Lemma 5.11. (1) L, (X DY) =Ly (X)—£,(Y) € n=NOk|[[X,Y]] (quasi-logarithm).
(2) £,([al X) — 9(a)y(X) € 7 NOK[[X]] for a € Ox.
Proof. (1) We have g(X?" @ Ypi) —(X@®Y)P =7R for R € Og[[X,Y]] because
g(x) = zP" mod 7 and z — zP is a ring homomorphism.
(X OY)=gt(X@Y)P) = (g0 O)(g(X" V") ~ 7R).

Now use the Taylor expansion. Let F' = ¢/ € Ok [[X]], notice that g(E(Xpi BYP)) =
Ly(X) 4+ £4(Y), we have

X ®Y) = 4(X) = 6,(V) = Y g(F" (X" @ Y7) R
n>1
where F[Fl .= %F(’“). Since (X )k = (Z) Xe=k FI¥ preserves integral coefficients.
Thus there is N such that =~ € 7~V Oy and then
(2) is similar to (1). O

Proposition 5.12. u € T, (T'), 4, € A" with 0(f,) = uy, then g(m)™y(0y,) has
a limit fu dly in BIR, which is nonzero for nonzero u. Moreover, for o € Gk,
o(f,dlg) = g(xc(o)) [,dly = fa(u) dl,. Thus ¢, € Homg, (Tx(T'), Bj) spans a
dimension [K : Q,] vector space, which implies that Tr(T") is de Rham.

Proof. Let Ko = W (kg)[2]. Consider

P
0: 0k ®(9K0 g+ — O@p
00> [wilr') = aln'.

i>0

Then ker 6 is generated by w = [°] — 7. Since
O([7]-tiny1) = [7].0(Gni1) = [7]-unp1 = un,
we have [7].{p4+1 = Uy, + xw for some x.
g(m)" g (1) — g(m)" g (iin) = g(m)" (9(m)lg (Un+1) — Ly([7]-Uns1 — 2)).
By Lemma,
9Ty {ns1) — Lyl iins1) € 7V (Ox @ A*).

Now
ly([)-itns1—2) by ([r)-8ns1) € Y %(OK@@ZH) e m VR (O @A)+ B,

n>1

bounded mod w**! for any k, thus bounded in BJ;. Hence £,(i,) is bounded and
g(m)™y(ty,) tends to zero.

By this, the limit is independent of the choice of i,,. We may take o(u,) = o (i)

and then
o[ at) = gbalo) [ at, = [ L
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—

Since [a].ty, = [a].uy + zw, by Lemma,
ly([a).iin) — gla)ly(in) € T NOx @ AT,
Then

N N w" e
ly([a).iiy + 2) — Ly([a) i) € z;l ——)(Ok © AT)
is bounded. The rest part is similar.
For u = (0,uq,...) € Tx(T") with uy # 0, i.e., u is a generator of T (I'), then

1
vp(un) = W%(W)

Since
n—1
——f
_PoPo---0PQ, Qo P*
- g1 L Il

=

0(X)

k>n
Since the Fisenstein polynomial @, is the minimal polynomial of w, over K,
Qn () € ker 0 is a generator. Thus

Since

UP(P o---0P(u,)) = Up(@in71]~un) = 'Up(ul) = Zp(ﬂ)

=) s vp(m) + pljvp(w) is independent of n,

(), gl

w

~

is nonzero. O

Let K/Q, be a finite Galois extension, (I',®) be a dimension d commutative
formal group, that is, for X = (X1,...,X4),Y = (Y1,...,Yy),

XY =(X®Y),....,(XDY)y)
with (X @Y)q € Og[[X,Y]] and (X +Y); = X; +Y; mod deg2, such that
XY =YaX,
XeY)eZ=Xo (Y& Z).

We can get a true group on (mc,)* = B4(0,17). We have a rank k Galois
Zy-module T, (I).
Let

L {we (Q}QK[[X]])dZO F,(X®Y)-F,(X) - F,(Y) € K®Og[[X]] for dF, = w}
Har(T) = {dF . F € K ® Og[[X]]} '
We can write w = f1dzy + -+ + fadxg for fi € Ok|[[X]].
Theorem 5.13. (1) dimg Hiy (T') = k = dimg, T,,(I).

For w quasi-log, (uy) € T,(T), dy, € (AN), O(y) =y, the limit of p"F,(iy,)

exists and does not depend on u.,, which is called the period fuw € B,IR of w. It’s
zero for w = dF for some F € K @ Og[[X]].
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(2)
Hig (T) x T,(T') — By

(w,u) M/uw

is linear, commutes with G -action. It respects filtrations if w € QL (T), then
[, wetB.
Hig () < Homo, (T,,(T), Big)

implies T,(T') is de Rham.
5.3. p-adic integration. Assume [K : Q,] < +00, X/K asmooth projective curve
with Jacobian J. Fix ¢+ : X — J. For w € Q}((X), we want to define F,, = [w,
which satisfies

(1) F, locally analytic outside the poles of w;

(2) dF, = w.

In the complex case, F,, will be multivalued. But in the p-adic world, F,, can be
defined around each point, but no analytic continuation because balls are disjoint.
There will be two many F,, because of the locally constant functions. On abelian
varieties, the group structure will help figure out the F,, we want. So, for general
varieties, we will define the p-adic integral theory using their Albanese varieties.

For log = [ 92, choices made smaller by requiring

log zy = log z + log v,
and
dlog =id : G, — G,.

If furthermore fix logp = £, we will get a unique log denote by log,.
Let Z = X or J. There is an exact sequence

0——H%(Z,9Q") —=DSK(Z) & (K ® DTK(Z)) — (R (5))"=" —=0

We want [df = f and [ % = log, f up to global constants.
Recall that there is a bijection of sets:

Vs ()70 Hexact) = Qi /{exact}

and there are three maps m, pry, pry from J x J to J.

Theorem 5.14 (Theorem of square). For w € (Q}((J))dzo

m*w — priw — praw
is exact on J x J, and can be written as dFu(,2)(:c,y), where
F® (,y) = Fo(w,y) + > Nilog, Fi(w,y)
up to constant with Fy(z,y) € K(J x J) and F;(z,y) € K(J x J)*.

Theorem 5.15 (Main theorem of integration). Ifw € (Q}((J))dzo, then there exists
a unique F,, locally analytic on J(Cp) with dF, = w and

Fw(X@Y) _Fw(X) _Fw(Y) = F£2)(X7Y)'

Main step of the proof:

(A) J(C,) contains a basis {U;} of neighborhood of 0 consists of open subgroup-
s. Furthermore, J(C,)/U; is a torsion group for any i (proved by formal

groups).
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(B) Formal integral w to get an analytic function F,, on a small enough open

subgroup U of J. Then using the function F‘,(Jz) which is constructed by

square theorem to continuous F,, to J and satisfy the relation in the theo-
rem.
By theorem of square, 3 FUSQ)(x, y) = Fo(z,y) + > N\ log, Fi(x,y) such
that dF,,SQ) = m*w — prjw — priw.
Proof. (1)By the Theorem below.
(2)For a closed form w € (Q% J))d:O, let F?) be the function on J x J as in the

Theorem of square. By formally integrality, we get F,, analytic globally on some
neighborhood U of zero,

F, =TI+ Z/\i log F;

We can take U to be a subgroup.

If w e H(J,Q), we can take F? = 0. We want F,([a).z) = aF,(z). For
x € J(C,p), there is m such that [m].z € U, we take F,(z) = - w([ ].z). Since
F,, is analytic on U,

Fu(z@y) — Fo(z) — Fu(y)

is analytic on U x U and d = 0, thus it is zero on U x U and we get the formula.

In general case, let fo(z) = r? (z,y) = Fu([2].2) — 2F,(z) on U. Let

ful@) = fu1(z) + ED(n = 1).2,2) = F([n].z) — nF,(x)

on U, then

frm () = fo([m].2) + nfm(2) = Fo([nm].x) — nmF,(z).
Define
Fulw) = = (Fu([nl.) ~ fa(x)
with n such that [n].z € U, then it does not depend on n. This finishes the
proof. O
Remark 5.16. For w € HO(J, Q'), m*w = priw + priw, we can take F? =0and
F,(X®Y)=F,(X)+ F,(Y).
It’s called the logarithm of .J.

Theorem 5.17. (1) J(C,) contains a basis of neighborhood of 0 of open subgroups.
(2) If U is one of these open subgroups, J(C,)/U is a torsion group.

Proof. Let x1,...,x4 € K(J), dz; — w; vanishes at 0, z — (z1(2),...,24(2)) is an
analytic isomorphism between some neighborhood of 0 and B4(0,6)~ = {x € C? |
vp(x;) > 8} Then
zi(21 ® 22) = wi(21) + Ti(22) + Fi(2(21), 2(22))
for F; € (x(21),2(22))?K[[x(21), 2(22)]] converges in Bag(0,67) for §~ > 4.
Let M = inf; v,(Fi(z,y)), (z,y) € B2q(0,67), then
vp(P z,p"y) > 2k + M

if (2,y) € B2q(0,07). Il k+M >4, v,(F;(p*x, p*y)) > k+6~, thus Baq(0,k+4")
is stable by @, and neighborhood is a group. For any k big enough, the inverse
image of B2q(0,k + 67) is an open subgroup of J(C,).

Since @p is dense in C,,

J(@,)/(UNJ(Q,)) = J(Cp)/U,
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where J(Q,) = |J J(L). Since J(L) is a compact group, the image of J(L) in
[L:K]<oo
J(C,)/U is finite, thus it is torsion and then so J(C,)/U is.
The compactness of J C P? follows from that P?(L) is compact since it is a union
of some

d
U(’)Lx~~-><OL><1><(9L><---><(9L,
i=0

and Oy is compact because [L : Q,] < o0o. O

Remark 5.18. If X has a good model over O, then J also has a good model J.
Moreover,

0—=U —3J(Oc,) = I(F,) — 0,
where U is analytically the unit open ball B;(0,07). & on J gives an addition law
on By(0,07) and (z @ y); € Oz, y]] gives a formal group law defined over Og-.

5.4. p-adic periods of abelian integrals. Recall Hiy = D{Sde(}Z) and the pairing

Hig(Z) x H(Z(C),Z) — C

(w,u) »—>/uw.

For w € DSK(J), U C J affine open on which w is holomorphic. Write U =
Spec(K([x1,...,z,]/I) — A" Say A C U(BJR) is bounded if its projection on
cach Al is bounded in By, i.e, for any k, IN(k) such that z;(4) € p~N®)(A+ @
Ok) + (ker §)*+1.

Define the Tate module

T,(J) == {(0,u1,...) s up € J(Cp), [P]-tnt1 = un}-

Theorem 5.19 (p-adic periods). (1) We can find bounded sequences (ay,), (by) in
U(BJR) with 0(b,) © 0(an) = un.

(2) p"(Fus(bn) — Fu(ayn)) has a limit [,w € By, which depends only on u and
the image of w in Hig (J). Thus we have a pairing

Hig (J) x T,(J) — Bl

(w, u) r—>/uw.

respects filtration. For w € HO(J,Q), J we tB;R.

(3)

It is Gk -equivariant,

Hig (J) — Homg, (T,(J), Big)
is injective and therefore Q, ® T,(J) is de Rham.

Proof. The non-degenerate is a consequence of Riemann relation. U

Idea behind the construction of p-adic periods fuw = limp"F,(4y,): We say
a function natural if it’s bounded outside their poles, that is, f holomorphic on
U = Spec(K|x1,...,2,]/T), f is bounded on any bounded set in U. For example,
IJ%I is bounded on v,(z) > 0 and v,(1 + ) > 0, but log(1 + z) is not bounded on
vp(z) > 0.

If w € DSK, F,([p].z) — pF.,(z) is natural.

pn+1Fw(ﬂn+1) _pan(’&n) = pn(pFw(anJrl)_Fw([p]ﬁ/n+l)+Fw([p]anJrl)_Fw(an))
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Use Taylor expansion, we get the naturality.
More conception construction.
(1) Recall the universal extension

0— H(J,QY) = J =5 J = 0.

For w € DSK(J), there exists a unique n(w) € H(J,Q') invariant by transla-
tion, such that m*w — n(w) = df for some f € K(J). We can define Fyw) by
L F,w([n].z), then we get a formula for F,.

(2) Let

J(Cp) ={u= (uo,u1,...,Un,...) : up € J(Cp), [Pl Unt1 = Un},
then

U ug

0— T,J = J(C,) X% J(C,) — 0.
0—H;(J(C),Z) - CI — J(C) —0.
u e J(Cp), i, € J(Bly) bounded with 7(6(ii,)) = u,. then [p"].4, converges
to tar(u) in J(BJR). For u € T,J, [ w = Fy)(tar(u)).

5.5. p-adic Riemann relations. Let wy,...,w, be a basis of H(J,Q'), 7: C9 —
J(C) the projection. Then

g
df =) Oifwi,
i=1
where 0; are translate invariant differential operators. For the theta function 6
on CY9, n; = d(%) comes from a differential form n; on J, ie., 7*n;, = n; for
n; € DSK(J). Then wy,...,wg,m1,...,n, is a basis of Hj (J). Moreover

g/um/vwi—/vm/uwi = 2mi(uftv).

The theorem of the cube says

0(z1 + 22 + 23)0(21)0(22)0(23)
9(21 + 22)9(2’2 + 2’3)9(23 + 21)

=" fo(21,02,23), fo € C(JxJxJ)".
In p-adic case, we can define log, 6 with dlog, 0 = Z§:1 Fy,w; by Green func-
tion.

Theorem 5.20. There exits a Green function G unique up to a polynomial of
degree 2 in the logarithm of J, such that

S (DG wi) =logs fulwr, w2, ).

0#5C{1,2,3} i€S
The Weil pairing
(= =)weil : Tp(J) X Tp(J) = Tp(ppe) = Zypt,

where T,(J) = Z, @ Hi(J(C), Z), (u, v)weil = (u#v)t. It is a big theorem that Weil
pairing is non-degenerate.

d
Z/ni/wi_/ni/wi = (U; V) Weil-
=1 YU v v v

Since (—, —)weil is non-degenerate, Hig (J) — Homg, (T,(J), Bir)-

Theorem 5.21.
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5.6. One example of application. Let K be a number field, and X/K be a
smooth proper curve, then J(K) is of the type finite groupxZ™. Assume that
n < g— 1, then X(K) is finite (special case of Mordell, Chabauty’s method). Let
P—-1,...,P—ne J(K) such that J(K)/(Py,...,P,) is torsion, then Since
dimH(J, Q') =g > n,

there is a nonzero w € H°(J, Q') such that F,(P,) =--- = F,(P,) =0, F,(0) =0,
thus F,,(P) = 0for any P € J(K). For Py € X(K), tp, : X — J, (X (K)) C J(K).
For f = F,, otp, locally analytic function on X, f(P) =0 for any P € X (K). Since

X (K,) D X(K) is compact, there exists finite set of U; on which f is analytic and
UU; D X(K,), f has a finite number of zeroes on each U;.

Conjecture 5.22 (Caporaso-Harris-Mazur). For g > 2, there exists a constant
N(g, K) such that for any X/K of genus g, | X(K)| < N(g,K).

Stoll and Rabinoff proved the case n < g — 2 under some technical assumptions.



	1. Complex abelian integral on elliptic curves
	1.1. Building blocks of functions on C associate to a lattice
	1.2. Abel theory
	1.3. Rational differential forms on E
	1.4. Algebraic universal extension
	1.5. Weil pairing

	2. Complex abelian integral on algebraic curves
	2.1. Algebraic curve over C
	2.2. Differential forms

	3. p-adic fields
	3.1. p-adic number
	3.2. No 2i in Cp
	3.3. p-adic logarithm
	3.4. Cyclotomic extension

	4. Fontaine's rings and p-adic Galois representations
	4.1. p-rings
	4.2. Teichmüller representatives
	4.3. The ring E"055DE+
	4.4. The ring A"055DA+=W(E"055DE+)
	4.5. The ring BdR+ and the field BdR
	4.6. p-adic Galois representation

	5. p-adic abelian integral
	5.1. Lubin-Tate formal groups
	5.2. Periods of Lubin-Tate groups
	5.3. p-adic integration
	5.4. p-adic periods of abelian integrals
	5.5. p-adic Riemann relations
	5.6. One example of application


